论文部分内容阅读
对一类未知的非线性的多变量系统,提出了用动态神经网络实现直接自适应控制的策略,基于Lyapunov理论,获得一个稳定并且连续的学习律,避免了递归训练过程,闭环系统被证明是鲁棒稳定的,跟踪误差收敛到一个小的残集,这种方法的特点是即不需要离线学习阶段也不要求初始的参数误差足够小,仿真结果验证了提出的动态网络的自适应控制算法的有效性。