Electronic structures and topological properties of TeSe2 monolayers

来源 :中国物理B(英文版) | 被引量 : 0次 | 上传用户:chen2960798
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
The successfully experimental fabrication of two-dimensional Te monolayer films[Phys.Rev.Lett.119106101(2017)]has promoted the researches on the group-Ⅵ monolayer materials.In this work,the electronic structures and topological properties of a group-Ⅵ binary compound of TeSe2 monolayers are studied based on the density functional theory and Wannier function method.Three types of structures,namely,α-TeSe2,β-TeSe2,and γ-TeSe2,are proposed for the TeSe2 monolayer among which the α-TeSe2 is found being the most stable.All the three structures are semiconductors with indirect band gaps.Very interestingly,the γ-TeSe2 monolayer becomes a quantum spin Hall (QSH) insulator with a global nontrivial energy gap of 0.14 eV when a 3.5% compressive strain is applied.The opening of the global band gap is understood by the competition between the decrease of the local band dispersion and the weakening of the interactions between the Se Px,Py orbitals and Te Px,Py orbitals during the process.Our work realizes topological states in the group-Ⅵmonolayers and promotes the potential applications of the materials in spintronics and quantum computations.
其他文献
We investigate the electronic structure and magnetic properties of layered compound Sr3Fe2O5 based on first-principles calculations in the framework of density functional theory with GGA+U method.Under high pressure,the ladder-type layered structure of Sr
A new structural parameter of amorphous alloys called atomic bond proportion was proposed,and a topological algorithm for the structural parameter was proven feasible in the previous work.In the present study,a correction factor,λ,is introduced to optimiz
We preform a first-principles study of performance of 5 nm double-gated (DG) Schottky-barrier field effect transis-tors (SBFETs) based on two-dimensional SiC with monolayer or bilayer metallic 1T-phase MoS2 contacts.Because of the wide bandgap of SiC,the
High-order harmonics and attosecond pulse generation with coherent wake emission are theoretically investigated for the effect of pulse duration and carrier envelope phase (CEP) of few-cycle laser pulse.We find that short pulse duration will cause the neg
As an ultrasensitive sensing technology,the application of surface enhanced Raman spectroscopy (SERS) is one interesting topic of nano-optics,which has huge application prospectives in plenty of research fields.In recent years,the bottleneck in SERS appli
The first-principles calculations were used to explore the tunable electronic structure in DyNiO3 (DNO) under the effects of the biaxial compressive and tensile strains.We explored how the biaxial strain tunes the orbital hybridization and influences the
Molecular dynamic analysis was performed on pure and doped (by Re,Ru,Co or W) Ni at 300 K using the embedded-atom-method (EAM) potentials to understand the crack formation of the doped Ni matrix in the (010)[001]orientation.When Ni was doped with Re,Ru,an
The construction of van der Waals (vdW) heterostructures by stacking different two-dimensional layered materials have been recognised as an effective strategy to obtain the desired properties.The 3N-doped graphdiyne (N-GY) has been successfully synthesize
Dielectrophoresis (DEP) technology has become important application of microfluidic technology to manipulate par-ticles.By using a local modulating electric field to control the combination of electroosmotic microvortices and DEE our group proposed a devi
We report an abnormal phenomenon that the source-drain current (ID) of AlGaN/GaN heterostructure devices de-creases under visible light irradiation.When the incident light wavelength is 390 nm,the photon energy is less than the band gaps of GaN and AlGaN