论文部分内容阅读
介绍了支持向量机算法的基本思想、数据分类的概念,分析了传统支持向量机算法的一般特性。用Libsvm工具箱实现了基于SVM算法的分类器设计,并用公共数据库中的数据集对设计的分类器进行了测试,重点针对训练样本的选择、参数的影响选择与优化问题进行了研究。实验结果表明,在应用支持向量机算法做数据分类时,选择合适的训练样本和参数有利于提高分类器的准确度。