论文部分内容阅读
The recognition of electroencephalogram (EEG) signals is the key of brain computer interface (BCI). Aimed at the problem that the recognition rate of EEG by using support vector machine (SVM) is low in BCI, based on the assumption that a well-defined physiological signal which also has a smooth form “hides” inside the noisy EEG signal, a Quasi-Newton-SVM recognition method based on Quasi-Newton method and SVM algorithm was presented. Firstly, the EEG signals were preprocessed by Quasi-Newton method and got the signals which were fit for SVM. Secondly, the preprocessed signals were classified by SVM method. The present simulation results indicated the Quasi-Newton-SVM approach improved the recognition rate compared with using SVM method; we also discussed the relationship between the artificial smooth signals and the classification errors.
The recognition of electroencephalogram (EEG) signals is the key of brain computer interface (BCI). Aimed at the problem that the recognition rate of EEG by using support vector machine (SVM) is low in BCI, based on the assumption that a well- defined physiological signal which also has a smooth form “hides” inside the noisy EEG signal, a Quasi-Newton-SVM recognition method based on Quasi-Newton method and SVM algorithm was presented. Newton method and got the signals which were fit for SVM. Secondly, the preprocessed signals were classified by SVM method. The present simulation results indicated the Quasi-Newton-SVM approach improved the recognition rate compared with using SVM method; we also discussed the relationship between the artificial smooth signals and the classification errors.