论文部分内容阅读
利用Faster RCNN算法实现生活垃圾的高精度识别。选取典型的6种生活垃圾建立数据集,采用数据增强方法提升了数据集目标数量及目标类别、尺度均衡性,分析对比三种具有显著差异的主干网络VGG-16、Res101、MobileNet_v1的精度、速度及泛化性能。采用结合特异层微调的端到端训练策略,对低识别率样本开展增强训练,由此获得了最低为92.85%的均值平均精度(mAP),随后对误识别样本中提取的三种典型错误进行优化,将最高mAP提高到99.23%。此外,设计含816张图片的背景数据集测试算法在多