论文部分内容阅读
提出了一种针对交通场景的基于深度学习的障碍物检测与深度估计方法。该方法对现有的YOLOv3模型进行改进,使用DenseNet网络代替原网络尺度较小的传输层,得到一种新的障碍物检测模型Dense-YOLO。然后采用立体匹配模型PSMNet得到双目图像的视差图,根据双目测距原理对被测目标深度进行估计。在KITTI数据集和实际交通场景中的实验结果表明,与YOLOv3模型相比,Dense-YOLO模型有效地提高了交通场景中障碍物检测的可靠性和正确率,对轿车、行人、骑行者和卡车这4类障碍物检测的平均精确率(a