论文部分内容阅读
为了提高视频序列中人体行为的识别率和增强在复杂环境下的适用性,通过选取人体行为区分度较高的运动方向特征、形状特征和光流变化特征进行行为描述,提出一种基于运动方向直方图(MOH)特征、2D-SIFT特征和光流方向直方图(HOOF)特征相结合的人体行为识别方法。改进运动方向直方图特征,使其在有符号梯度空间下对人体全局运动方向具有更为鲁棒的表示。使用视觉词袋模型既解决了不同动作提取的兴趣点点数不同的问题,又实现了局部特征的有效融合。实验在Weizmann数据库和KTH数据库上识别率分别高达97.83%和9