论文部分内容阅读
1.0wt.% carbon nanotube (CNT) reinforced 2024Al matrix composite was fabricated by cold isostatic press and subsequent hot extrusion techniques. The mechanical properties of the composite were measured by a tensile test. Mean-while,the fracture surfaces were examined using field emission scanning electron microscopy. The experimental results show that CNTs are dispersed homogeneously in the composite and that the interfaces of the Al matrix and the CNT bond well. Although the tensile strength and the Young’s modulus of the composite are enhanced markedly,the elongation does not decrease when compared with the matrix material fabricated under the same process. The reasons for the increments may be the extraordinary mechanical properties of CNTs,and the bridging and pulling-out role of CNTs in the Al matrix composite.
1.0 wt.% Carbon nanotube (CNT) reinforced 2024 Al matrix composite was fabricated by cold isostatic press and subsequent hot extrusion techniques. The mechanical properties of the composite were measured by a tensile test. Mean-while, the fracture surfaces were examined using field emission scanning electron microscopy. The experimental results show that CNTs are dispersed homogeneously in the composite and that the interfaces of the Al matrix and the CNT bond well. Although the tensile strength and the Young’s modulus of the composite are enhanced markedly, the elongation does not decrease when compared with the matrix material fabricated under the same process. The reasons for the increments may be the extraordinary mechanical properties of CNTs, and the bridging and pulling-out role of CNTs in the Al matrix composite.