论文部分内容阅读
Modern fringing reefs are developed on the intertidal to subtidal area of Xiaodonghai bay, Sanya, Hainan Island. The reef flat extends several dozen meters toward the sea. Various ecological and sedimentary zonations can be distinguished, including, from land to sea, beachrocks, large massive corals, inner reef flat, outer reef flat, and fore-reef slope. The carbonate sediments and constituent hermatypic coral communities are different in these zones. The beachrocks are composed mainly of biological sands, including coral skeletons, algae, gastropods, bivalves, and benthic foraminifera. Quartz sands are less common in this zone. Carbonate diagenesis in beachrocks is characterized by early cementation. The fringing reef flat is progradationally developed toward the sea. Large massive corals grew in the zone next to the beachrocks. These corals are large, flat-toped, and autochthonous in the production of bioclastic grains and lime mud. Large and massive coral skeletons are surrounded by coral skeletal grains, bioclasts, and lime-mud sediments. The inner reef flat consists mainly of skeletons of branching corals that are covered by bioclasts and lime mud, and living corals are mostly massive in form. Statistical analysis of coral-community dynamics shows that the outer reef flat with strong waves is the most suitable place for hermatypic corals to flourish. There, the living corals are most densely distributed. Both massive corals and branching corals (e.g., Acropora corymbosa) are exceptionally healthy in this zone. Bioclasts and lime mud are washed out due to strong wave action. Microbial carbonates generally are deposited within cavities of the beachrocks and coral skeletal cavities and on the surfaces of bioclastic grains. The latter two types, however, are more common. Ecological-sedimentary zonations across the Xiaodonghai reef flat from beachrocks to outer reef flat are controlled by variations in wave strength and water energy. Microbial carbonates rarely developed on outer reef flat under strong wave action.
Modern reefs are developed on the intertidal to subtidal area of Xiaodonghai bay, Sanya, Hainan Island. The reef flat extends several dozen meters toward the sea. Various ecological and sedimentary zonations can be distinguished, including, from land to sea, beachrocks, large The carbonate sediments and constituent hermatypic coral communities are different in these zones. The beachrocks are composed mainly of biological sands, including coral skeletons, algae, gastropods, bivalves, and benthic foraminifera. Quartz sands are less common in this zone. Carbonate diagenesis in beachrocks is characterized by early cementation. The fringing reef flat is progradationally developed toward the sea. Large coals grew in the zone next to the beachrocks. These corals are large , flat-toped, and autochthonous in the production of bioclastic grains and lime mud. Large and massive coral skeletons are surrounded by The inner reef flat consists mainly of skeletons of branching corals that are covered by bioclasts and lime mud, and living corals are mostly massive in form. Statistical analysis of coral-community dynamics shows that the outer reef flat with strong waves is the most suitable place for hermatypic corals to flourish. There, the living corals are most densely distributed. Both massive corals and branching corals (eg, Acropora corymbosa) are exceptionally healthy in this zone. Bioclasts and lime mud are washed out due to strong wave action. Microbial carbonates generally are within the deposition of cavities of the beachrocks and coral skeletal cavities and on the surfaces of bioclastic grains. The latter two types, however, are more common. Ecological-sedimentary zonations across the Xiaodonghai reef flat from beachrocks to outer reef flat are controlled by variations in wave strength and water energy. Microbial carbonates rarely developed on outer reef flat under strong wave action.