尺度方向自适应的相关滤波跟踪算法

来源 :计算机仿真 | 被引量 : 0次 | 上传用户:thonny007
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对DSST算法对目标方向发生变化时易出现的跟踪丢失问题,提出了一种目标尺度和方向自适应稳健跟踪算法。算法首先提取目标候选区域HOG和HSV特征,通过相关滤波算法构建多特征融合的二维定位滤波器,从而精确确定目标的中心位置。然后,根据方向池用HOG特征构建一维方向相关滤波器确定目标的最佳方向。并通过构建一维尺度相关滤波器确定最佳尺度。最后,根据PSR值变化情况调整相关滤波模型更新的权重,使模型适应目标的变化特征。选取OTB2013部分数据集进行测试,实验结果表明,上述算法距离精度保持在15pixels
其他文献
为研究游乐设施运行中乘客身体特定部位加速度测量问题,目前采用对加速度测量的对象是设备,即选取座椅上固定位置代替人体的特定部位。此外,为准确测量分别建立了集中参数模型、有限元模型、多体动力学模型进行人椅耦合,其中集中参数模型因其结构简单被广泛研究。将人体简化为弹簧和集中质量,分别搭建了3自由度和4自由度座椅-乘客加速度集中参数传递模型,探究竖直方向上人体加速度传递响应关系,对模型进行仿真。根据模型的
针对传统数据库学习可视化程度低,有效提高学习效率,构建了学习行为大数据可视化的网络数据库学习方法。分析学习行为具体特征,结合贝叶斯理论按学习资源归类可视化数据;设定相关学习变量,观测变量,分别将正确率、错误率、所学知识难度、遗忘概率及状态概率等特征作为可视化函数,通过对学习行为数据采集和储存、分析学习行为及建立可视化模块,建立大数据可视化的网络数据库,充分掌握学习者学习行为情况,随后设定数据库学习
声发射技术作为一种成熟的无损检测手段,对声发射信号的分析有重要意义。针对大量的声发射信号撞击文件,单独利用C#或MATLAB语言都无法快速进行声发射信号特征参数分析。通过研究C#与MATLAB混合编程的常用技术,详细分析.NET程序集调用MATLAB函数编写C#窗体应用程序的方法,利用上述方法实现了对大量声发射信号撞击的特征参数提取和分析。通过程序实例,证明了所提方法能够降低声发射信号处理分析算法
针对传统生物激励神经网络遍历路径规划的重复覆盖率高和子区域间路径不是最优的问题,提出了基于内螺旋搜索的生物激励遍历路径规划方法。方法在未知水下环境信息的情况下通过生物激励神经网络算法完成水下地图环境建模与路径规划,在分割出子区域后通过内螺旋算法占主导完成子区域遍历,避免神经元活性值相同引起重复覆盖,子区域间通过A*算法实现最优路径规划。仿真结果表明,相较原方法,上述方法生成的路径分别在重复覆盖率、
为解决具有速度不易测量、模型不确定与外界干扰的欠驱动船舶路径跟踪问题,提出一种结合线性扩张状态观测器(LESO)的滑模控制算法。首先对船舶路径进行预测,据此预测值和参考路径值计算路径未来误差,并基于Backstepping算法设计参考艏向角。其次,采用双曲正切函数设计滑模控制器,对艏向进行控制。引入LESO对外界干扰和不确定参数进行逼近,以提高控制器的鲁棒性。并利用非线性观测器和LESO对船舶纵向
网络环境日趋复杂给数据库的安全访问提出了严峻挑战,针对敏感数据日益增长的数据库信息,提出了敏感信息可变保序加密安全算法。在保序加密模型分析的基础上,为避免明文顺序相同造成加密效果不佳的问题,引入随机发生函数构建密钥,使明文域与任意数共同影响密钥,并通过对明文域采取等分处理降低密文域大小,从而完成对存入数据库的明文域信息加密。对数据库敏感信息引入量子计算进行二次加密,利用自旋态和模糊态生成密钥,以及
求解变系数方程的高斯消元法与高斯-约当消元法计算原理类似、问题相近,但前者计算速度高于后者。提出分段对称反向高斯-约当消元法,其中包括根据系数矩阵结构特点构成特殊增广阵,以展示和应用元素的变化规律,并分段对上下三角元素消元以大大提高计算效率。对矩阵下三角元素正向消元及对称计算可简化所有下三角元素计算,而对上三角元素反向消元可再省略所有上三角元素计算,而取倒后的对角元素作为规格化因子可大大减少除法计
针对干煤粉气化炉多变量、大滞后、纯耦合的特性,提出一种改进的BP-PID控制算法.炉内温度是气化炉安全运行的重要指标之一,由于炉内温度与氧煤比的值具有很强的相关性,因此,对于气化炉主要控制回路中氧煤比的建模与控制研究具有实际应用价值.介绍了PID控制器结构和BP神经网络算法描述,根据现场采集数据,进行数据预处理后,利用渐消记忆递推增广最小二乘法建立气化炉数学模型,采用改进的BP-PID控制算法对炉内温度进行控制.仿真结果表明,改进的BP-HD控制算法比普通的PID控制算法控制具有更好的控制效果,自适应和抗
在机器人视觉导航中,传统的光栅投射校正方法中采用非线性迭代方法辨识参数,无法保证参数校正解的全局最优性。提出机器人视觉导航传感器光栅投射误差校正方法。考虑机器人视觉导航所处实际环境,仿真输出场景数据。依据传感器光栅投射产生的测量序列,得到标准线性的最小二乘形式。根据数据采样序列迭代识别参数,将传感器投射数据输入到位移解算器中,利用正弦信号以及余弦信号完成误差校正运算。实验结果表明,提出的机器人视觉
由于软件测试数据待测行为段序列连接存在冗余,导致目标路径覆盖率降低,提出基于状态空间剪枝的软件测试数据扩增算法。通过并发无关行为段在软件测试内的位置实施分类,依据分类结果采用状态空间剪枝算法,缩减状态空间的规模后,采用测序序列生成算法采用状态节点投影,对所有待测行为段实施操作和判断,按照状态空间实施全序列连接操作,生成全覆盖、无冗余的测试序列;采用自适应粒子群优化算法,设置初始参数、初始种群,判断