氢化钛粉末冶金制备的近α型Ti-1100合金的高温压缩性能

来源 :钢铁钒钛 | 被引量 : 0次 | 上传用户:liuqingsong835200
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
以氢化钛粉为原料,采用粉末冶金法-热等静压法制备高温钛合金Ti-1100,并进行了等温压缩试验,通过压缩样品应力应变曲线进行压缩变形行为分析,再结合Arrhenius双曲正弦本构模型建立热压缩本构方程.通过应力应变曲线分析,发现应变速率在0.01 s-1时,所有样品在加工硬化后均表现出稳态流变行为;而应变速率为1 s-1、温度在900℃或1000℃时,流变应力随着变形达到稳态流变状态后,呈增加趋势.应变速率为0.01、0.1、1 s-1时的热压缩变形激活能分别为96、165、232 kJ/mol.硬度测试结果表明显微硬度随温度和应变速率增加稍有降低趋势,当温度为950℃,应变速率为0.1 s-1时,合金的硬度普遍较小,热加工性能最佳.
其他文献
世界范围的经济结构调整,给城市留下了大量遭受破坏和污染的场地,而城市建设和改造也产生大量的废弃材料成为当代城市需要处理的棘手问题.通常城市中的废地和废料大多以工程措施进行处理,很少将它们结合起来利用.美国波士顿“大开挖”(Big Dig)项目为这一尝试提供了机遇.“大开挖”产生了大量的挖掘废料,而波士顿斯佩克特克尔岛(Spectacle Island,下称斯佩岛)是准备用来堆放部分废料的垃圾场.在设计师与多方专家的共同参与下,废地与废料产生了化合作用,使得斯佩岛从原先的垃圾岛转变为波士顿港一处新的地标景观
期刊
针对近年来钛及钛合金表面气体元素扩散耐磨处理技术的研究进展进行了总结梳理.认为对钛合金表面进行渗氧、渗氮和渗碳耐磨处理,都可以起到提高表面硬度,改善表面耐磨性能的效果,结合真空和等离子体等技术,可以使得扩散层厚度增加,但需要结合工艺选择恰当的参数,不然会对材料力学性能带来较大的影响.另外耐磨状态是多样的,没有一种耐磨层能够适合于所有的摩擦环境;同时现代的服役环境更趋于复杂,不仅要求耐磨,还有耐蚀、导电等其它功能方面的要求,这样,就需要材料表面设计者,依据服役的苛刻条件,结合多场的相互作用关系,在现有表面技
钛及钛合金综合性能优异,但由于高温活性强导致焊接氧化问题严重,特别是在很低的固态温度下仍然吸收气体影响焊接接头质量,因此需要严格的焊接保护措施.在分析了钛合金的氧化机理及特性的基础上,系统总结了焊接过程中的各种防氧化保护措施和具体技术.详细介绍了钛合金长直焊缝、环形焊缝、空间不规则焊缝以及增材制造四种典型过程的防氧化保护问题,主要的防护措施有保护拖罩、封闭式充氩环境以及强制冷却三大类.针对钛合金长直焊缝局部气体保护,一般形式为保护拖罩结合背面保护气槽以及水冷措施;对于环形焊缝的背面保护方式,可以采用背面拖
钛合金因具有高比强度、高比模量、耐腐蚀、耐低温、无磁等性能特点而被广泛应用.然而,与传统钢铁材料相比,钛合金存在弹性模量低、耐热性能不足、耐磨性差等局限,阻碍其在航空航天、兵器行业等领域的推广应用.与钛合金相比,钛基复合材料可将基体钛合金高强塑性与增强体高模量、高耐磨的优势相结合,具有比钛合金更高的弹性模量、耐磨性及高温性能,从而满足一些高承载、抗冲击、高耐磨和高温抗氧化等极端工况条件下的使用要求.从钛基复合材料发展历程出发,对钛基复合材料耐磨性研究进展加以概述,主要介绍了钛基复合材料耐磨性表征方法和摩擦
高炉冶炼钒钛矿过程产生了大量含钛高炉渣,攀钢针对渣中钛资源的回收利用成功开发出了高温碳化-低温氯化工艺,但是该工艺存在碳化渣磨矿和氯化尾渣利用等技术性难题,还需要继续探索绿色、经济的处理方法.针对高温碳化过程中Ti(C,N)弥散分布的问题,提出高温碳化过程加铁富集Ti(C,N)的思路,试验考察了铁/渣(质量比)、生铁添加批次、保温富集时间及预配铁量等因素对富集过程的影响.结果 表明,熔渣中Ti(C,N)能聚集在熔铁表面并随其下沉至坩埚底部,水淬后附着有Ti(C,N)的铁块可与残渣实现自然分离,按铁/渣为1
在高纯氩气气氛下,在CaCl2熔盐中电解高钛渣制备金属钛,研究了成型压力与阴极片孔隙率的关系以及对电解过程的影响,并采用XRD、SEM等分析手段对阴极片及电解后的物相和微观形貌结构进行表征.结果 表明:成型压力对阴极片孔隙率有直接影响,随着成型压力升高,阴极孔隙率下降;阴极片的孔隙率直接影响电脱氧过程,适当的孔隙率有利于形成中间产物CaTiO3和提高电还原速率.4 MPa压制的阴极1050℃烧结2h,孔隙率为34.79%,电解12h产物氧含量降低至1.75%,钛含量为95.72%,此时阴极片的电化学性能较
以热轧态Ti80合金作为基材,在Gleeble-3500热模拟测试机上进行高温压缩测试,变形温度为800~1000℃,应变速率为0.01~10 s-1,总变形比例为75%.结果 表明:Ti80钛合金在800~950℃时处于α+β两相区,其流变行为受变形温度和应变速率的显著影响.Ti80钛合金的加工硬化主要来自于初始α相中位错密度的提高,变形温度的提高会导致α相的减少,流变峰值应力不断降低,过高的应变速率会导致α相内位错运动受阻.Ti80钛合金中的初始α相更容易发生动态回复和动态再结晶,随着变形温度的提高,
采用扫描电镜(SEM)和金相显微镜(OM)研究了固溶热处理对Ti6Al4V ELI钛合金显微组织的演变规律,以及显微组织对力学性能的影响关系,结果表明:随着固溶温度的升高,Ti6A14V ELI钛合金初生αp相含量降低,片层α相厚度和β晶粒尺寸均增加;钛合金强度和塑性均随着固溶温度的升高而降低,在952℃固溶后时效,抗拉强度可达915 MPa,延伸率16.8%,断裂韧性仅为84 MPa·m1/2;在997℃进行固溶后时效,钛合金抗拉强度降低至861 MPa,延伸率9.6%,断裂韧性达115 MPa·m1/
激光熔丝增材制造技术在航空航天、海工船舶等领域应用前景广阔.针对TC4-DT材料,在初步优化的工艺参数下,通过激光熔丝增材制造技术制备金属试样,并对试样进行固溶-强化热处理,研究激光熔丝沉积态及热处理态的微观组织、缺陷及室温拉伸力学性能.研究发现,激光熔丝TC4-DT成形态组织为粗大的柱状晶及针状α\'马氏体,热处理后转变为等轴晶与柱状晶的双相组织,马氏体分解为针状α+β双相组织,固溶-强化热处理后拉伸力学性能与锻件水平相当.
分别以Ni+Ti元素混合粉末和NiTi预合金粉末为原料,采用选区激光熔化工艺打印成形.重点研究了在相同打印工艺参数下原料粉末对成形件致密度、物相组成、显微组织、显微硬度的影响,从而反馈说明所用打印粉末对成形件性能的影响.结果 表明:在相同打印工艺参数下,整体上NiTi预合金粉末成形件的致密度较高,而Ni+Ti混合粉末成形件的显微硬度较高.对于同一种粉末,随着能量密度的增大,成形件的致密度先增大后减小,而显微硬度先减小后增大.NiTi预合金粉末成形件有致密的微观结构且相分布均匀,但存在少量孔隙.Ni+Ti混