论文部分内容阅读
Mean Shift算法因为简单性和稳定性在目标跟踪中得到广泛应用,但是当目标和背景的颜色模型比较接近时,传统的Mean Shift算法由于缺少空间信息,且经典的相似性度量函数不易区别,导致跟踪失败。为了克服上述缺点,采用基于空间颜色特征和新的相似性度量的Mean Shift算法,并提出一种融合Kalman滤波器和改进的Mean Shift算法的目标跟踪方法。首先,利用改进的Mean Shift算法计算出当前帧中目标的准确位置,然后使用Kalman滤波器去预测下一个初始搜索位置,用于下一帧中Mean