论文部分内容阅读
Three types of Ce0.45Zr0.45La0.1O1.95 mixed oxides were prepared by H2O2-assisted precipitation using ZrOCO3, ZrO(NO3)2, and Zr(NO3)4 as precursors. The Pd/Ce0.45Zr0.45La0.1O1.95 three-way catalysts were prepared by the wet impregnation and characterized by the X-ray diffraction (XRD), Raman spectroscopy, nitrogen adsorption, X-ray photoelectron spectroscopy (XPS), temperature-programmed reduction (TPR), and oxygen storage capacity. XRD and Raman spectroscopy results showed that the use of ZrOCO3 or ZrO(NO3)2 gave a CeO2-ZrO2 mixed oxide with a cubic phase of high thermal stability, while an extra t″-phase was observed in the aged Pd/Ce0.45Zr0.45La0.1O1.95 catalyst prepared using Zr(NO3)4. The activities of the three catalysts were evaluated using simulated exhaust gas under working conditions. The Pd/Ce0.45Zr0.45La0.1O1.95 catalyst prepared using ZrOCO3 as precursor gave the best activities for C3H8, CO, and NO conversion. The use of ZrOCO3 as precursor was better suited for the formation of Ce3+and more favorable for the homogeneous insertion of Zr4+ and La3+ into the CeO2 lattice, which resulted in better thermal stability and enhanced redox properties of the Pd/Ce0.45Zr0.45La0.1O1.95 catalyst.