论文部分内容阅读
边界Fisher分析(MFA)是一种有效的特征抽取方法,但在人脸识别的应用中会遭遇小样本问题。基于此,提出一种利用零空间法求解MFA优化准则的算法。该算法通过在MFA的类内散度矩阵的零空间中最大化MFA类间离散度得到最优投影向量,从而避免MFA方法所遇到的小样本问题,同时也保留了包含在类内散度矩阵零空间中的鉴别信息。在标准人脸库上的识别实验结果表明,该算法的识别率高于LDA和MFA,并且较容易选择其最优低维特征空间的维数。