V2O5·nH2O nanosheets and multi-walled carbon nanotube composite as a negative electrode for sodium-i

来源 :能源化学 | 被引量 : 0次 | 上传用户:cwsyydr01
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Two dimensional (2D) transition metal oxides and chalcogenides demonstrate a promising performance in sodium-ion batteries (SIBs) application. In this study, we investigated the use of a composite of freeze dried V2O5·nH2O nanosheets and multi-walled carbon nanotube (MWCNT) as a negative electrode mate- rial for SIBs. Cyclic voltammetry (CV) results indicated that a reversible sodium-ion insertion/deinsertion into the composite electrode can be obtained in the potential window of 0.1-2.5 V vs. Na +/Na. The com- posite electrodes delivered sodium storage capacities of 140 and 45 mAh g ? 1 under applied current den- sities of 20 and 100 mA g ? 1 , respectively. The pause test during constant current measurement showed a raise in the open circuit potential (OCP) of about 0.46 V, and a charge capacity loss of ~10%. These val- ues are comparable with those reported for hard carbon electrodes. For comparison, electrodes of freeze dried V2O5·nH2O nanosheets were prepared and tested for SIBs application. The results showed that the MWCNT plays a significant role in the electrochemical performance of the composite material.
其他文献
Development of cost-effective and robust counter electrodes (CEs) is a persistent objective for high- efficiency dye-sensitized solar cells (DSSCs). To achieve this goal, we present here the hydrothermal syn- thesis of well-aligned NiPt alloy CEs, which i
Photocatalytic conversion of solar energy into hydrogen and high value-added fine chemicals has at- tracted increasing attention. Herein, we demonstrate an efficient photocatalytic system for simultane- ous hydrogen evolution and benzaldehyde production b
High quality perovskite films with large columnar grains are greatly desired for efficient perovskite solar cells. Here, low volatility N -methyl-2-pyrrolidone (NMP) was added in MAI/IPA solution in a two-step spin-coating method, which promoted the conve
Water splitting by electrolysis is an appealing pathway for sustainable hydrogen production.The practical performance of water splitting is highly dependent on the efficiency of electrocatalysts,which can promote the anodic oxygen evolution reaction (OER)
Carbon layers with microporous structures fine-modulated by naphthalene (NAP) were prepared to coat on LiFePO 4 , aiming to enhance the Li + diffusion coefficient for Li-ion batteries. Characterized by BET, XRD, TEM, EIS, etc., it is indicated that in the
The discovery of novel electrode materials promises to unleash a number of technological advances in lithium-ion batteries.V2O5 is recognized as a high-performance cathode that capitalizes on the rich redox chemistry of vanadium to store lithium.To unlock
Copper-based catalysts for CO2 hydrogenation to methanol are supported on ZrO2 and CeO2,respectively.Reaction results at 3.0MPa and temperatures between 200 and 300 ℃ reveal that Cu catalysts supported on ZrO2 and CeO2 exhibit better activity and selectiv
Silicon, as a promising semiconductor for fabricating photocathode toward photoelectrochemical hydro- gen evolution reaction (PEC-HER), should be improved in light harvesting ability and catalytic kinetics to obtain high PEC performance. Herein, a novel a
Invasion of drilling fluid into natural gas hydrate deposits during drilling might damage the reservoir, induce hydrate dissociation and then cause wellbore instability and distortion of the data from well log- ging. Adding nanoparticles into drilling flu
The dynamic and kinetic evolution of supported metal particles in the presence of reactants is deci- sive in shaping the nature of the catalytic active sites and the deactivation process. Ostwald ripening of FeO/Pt(111) supported Au particles in the prese