【摘 要】
:
为了解决K-means算法对初始聚类数k和初始聚类中心经验参数的依赖问题,提出了一种基于最小生成树的无参数化聚类MNC算法(MST based Non-parameterized Clustering).首先将待
【机 构】
:
南京师范大学 计算机科学与技术学院,南京,210023;南京大学 电子科学与工程学院,南京,210023
论文部分内容阅读
为了解决K-means算法对初始聚类数k和初始聚类中心经验参数的依赖问题,提出了一种基于最小生成树的无参数化聚类MNC算法(MST based Non-parameterized Clustering).首先将待聚类数据集抽象成赋权完全图WCG(Weighted Complete Graph),其中的点代表向量,赋权边代表数据间的相似关系;然后将WCG转换成全连通的最小生成树MST(Minimum Spanning Tree);接着利用k=2的经典K-means算法对MST边集的一维权重空间进行聚类,得到剪枝的阈值;最后对MST进行剪枝和噪声过滤,得到的连通分量即为聚类的簇.实验结果表明,相对传统聚类算法,MNC算法不仅能够识别不同形状的数据簇,而且其无参数化的特点可以大大减少聚类时间,提高聚类效率.
其他文献
在Computer Vision(CV)领域应用模型的开发过程中,领域专家和技术人员之间的沟通存在很大问题,同时,种类繁多的CV算子间的组合调用较为困难,难以集成.为解决以上问题,本文基于Xtext框架,采用模型驱动开发的方式,设计实现了面向计算机视觉的领域特定语言——Computer Vision Domain Specific Language(CVDSL). CVDSL整合了常用CV算子,为
准确的剩余使用寿命预测在数字化车间的预测和健康管理中起着至关重要的作用.如数字化车间安全保证中最重要的环节是故障的排查和维修,但是目前故障的排查和维修都是需要在停
针对图像协同显著性检测问题,提出了一种基于元胞自动机的低秩加权检测方法.利用3个显著性检测算法生成多个显著图,结合超像素分割提取协同显著性区域.在协同显著区域的特征矩阵上施加秩约束,以获得稀疏误差矩阵,基于稀疏误差矩阵为每个显著图计算自适应权重.将显著图与其对应的权重相乘以获得融合的协同显著图,利用元胞自动机更新显著性区域.在MSRC和i Coseg数据集上的实验结果表明,相对于其他的算法,本文算
针对产品信息交换中设计意图语义挖掘需求,以STEP AP242为基础,构建产品三维几何信息与非几何信息语义关联的STEP知识图谱,实现STEP设计意图提取和交换.重点研究了STEP知识图
人脸表情识别任务在近些年取得了广泛的研究和应用,但是由于装饰物以及人的行为等其他因素,会对人脸的局部区域产生遮挡或破损,从而降低了表情识别的精度.针对有局部破损或遮挡的低质人脸图像表情识别,本文提出了一种基于端到端的低质人脸图像表情识别方法.本文通过在现有的人脸数据集上人为添加破损或遮挡作为低质样本集,利用生成对抗网络修补破损的区域,将复原后的图像和低质的图像以及原始不存在局部遮挡或破损图像通过分
在通过生物特征对人脸认证识别时,针对支持向量数据描述存在不能紧密包裹、没有合适拒识机制、正确识别率不能逼近100%的问题,提出了一种具有合适拒识机制的高正确识别率分类器设计算法—基于同类特征点集和包裹点集的同类特征区域紧密包裹曲面的求解算法,设置所有紧密包裹面之外的公共区域为分类器的拒识区域,用ORL人脸库和扩展Yale B人脸库各自作对比实验表明,本文的方法在较小拒识率情况下,分类器正确识别率能
近年来,机器学习算法广泛应用于多个领域.超参数的选择直接影响了算法模型的性能,然而超参数优化过程往往依赖于专业知识和长期经验的积累.为了解决上述问题,本文提出了一种
多标记特征选择是机器学习和人工智能领域的研究热点之一,现有多标记学习的研究是假设每个示例的标记呈均匀分布,即每个示例的各个相关标记的重要程度相同.然而,在许多应用领
QR码(Quick Response Code)作为重要的信息载体,正面临着严重的信息泄露和信息篡改等安全威胁.本文提出一种基于拟态防御思想的QR码信息加密架构(Mimic QR Code,M-QR),以提升
针对SRGAN红外图像超分辨重建时,存在图像高频特征丢失及细节伪影问题,本文提出双判别生成对抗网络DDSRGAN(Double Discrimination-SRGAN)重建算法,并改进网络结构.在图像判别器的基础上增设特征判别器,在生成网络中引入无BN(Batch Normalization)层的残差中的残差块RIRB(Residual in Residual Block),内部残差块密集连接,