论文部分内容阅读
针对赖氨酸发酵过程的时变、非线性和高耦合性,提出基于逆系统的赖氨酸发酵多变量解耦内模控制方法。根据动态递归模糊神经网络(DRFNN)的非线性辨识原理离线建立发酵过程的逆模型,将得到的逆模型串联在发酵系统之前,实现了发酵过程输入输出解耦线性化,从而得到伪线性系统;对复合后的伪线性系统采用内模控制。仿真结果表明,该方法能够适应赖氨酸发酵过程模型的不确定性和参数的时变性,具有较强的鲁棒性,且结构简单,易于实现。