论文部分内容阅读
A numerical evaluation of stress concentrations of corroded plate surfaces of small-scale corroded steel specimens is compared with the experimentally estimated ones. Eleven specimens were cut from a steel box girder, which was initially corroded in real seawater conditions. The surface of all corroded specimens was analysed applying photogrammetry techniques, and a statistical description of an idealised corroded surface of each specimen was established. Fatigue lives of specimens are determined from the fatigue tests. Based on experimentally obtained fatigue lives, the stress concentration factors are calculated concerning the ideally smooth specimens. The correlation between the statistical parameters of the corroded specimen surfaces and the estimated stress concentration factors is analysed. Idealised corroded surfaces, converted in graphical format, are then used for the finite element modelling in ABAQUS software, and stress concentration factors are estimated from the finite element results. A convergence study is performed to determine the appropriate finite element mesh density. Comparison between experimentally obtained and numerically estimated stress concentration factors is performed as well as correlation analysis between actual and finite element predicted crack locations.