论文部分内容阅读
为更好地对听视觉情感信息之间的关联关系进行建模,提出一种三流混合动态贝叶斯网络情感识别模型(T_AsyDBN)。采用MFCC特征及基于基频和短时能量的局域韵律特征作为听觉输入流,在状态层同步。将面部几何特征和面部动作参数特征作为视觉输入流,与听觉输入流在状态层异步。实验结果表明,该模型优于有状态异步约束的听视觉双流DBN模型,6种情感的平均识别率从52.14%提高到63.71%。