论文部分内容阅读
近红外光谱技术在遥感监测领域中应用广泛,针对典型地面目标物遥感监测识别需要,提出了光谱主成分分析(PCA)与模糊聚类结合的分类识别方法,提高了识别算法效率及准确性。以四类典型地面目标物作为研究对象,分别测量其在1 100~2 500nm范围内漫反射光谱,首先对漫反射光谱进行主成分分析,得到代表光谱特征的主成分分量,然后将其作为模糊聚类分析模型输入参数,计算样品主成分集合之间贴合度,最后利用择近原则对样品进行匹配分类。结果表明,主成分分析可以有效提取光谱特征并且降低数据维度,结合基于择近原则的模糊分类