论文部分内容阅读
研究了标准BP网络、改进的BP网络(带动量的自适应BP网络)、 L-M网络和RBF网络及其学习算法, 探讨了基于这四种神经网络的导弹惯性器件故障预报方法, 并通过仿真实验对四种网络的预测预报性能进行了分析比较.结果表明, L-M网络和RBF网络对惯性器件的故障预报比两种BP网络更准确, 收敛速度更快.