单分散Ni簇锚定在CN上用于高效光催化析氢

来源 :催化学报 | 被引量 : 0次 | 上传用户:c13140608886
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
利用太阳光在常温常压下驱动光催化反应高效进行是解决人类面临的能源、环境问题从而实现绿色化学的理想方案之一.然而,兼顾效率、成本和稳定性的高性能光催化体系的研究依然存在巨大的挑战.石墨氮化碳(g-C3N4)基光催化剂由于高稳定性、无毒无害和适合的能带结构,在光催化制氢方面存在巨大潜力.然而,表面的慢反应速率导致了光生电子和空穴的快速复合,限制了其实际引用.而助催化剂的负载对光催化反应起着至关重要的作用.首先,助催化剂能降低光催化反应的过电势;其次,能加快界面的电荷分离和迁移并提供更多的活性位点;最后,还可以抑制光腐蚀并且增强光催化剂的稳定性等.因此,开发合适的助催化剂提高表面反应速率对高效光催化制氢极为重要.助催化剂的研究急需新的设计思路,需要同时满足以下条件:(1)助催化剂定向锚定在半导体的电子富集区域捕获电子;(2)与半导体界面形成强且稳定的界面相互作用转移表面电荷;(3)高度分散的非贵金属助催化剂.本文以具有天然表面官能团和空隙的超薄氮化碳纳米片作为载体,设计了光化学还原制备单分散的镍原子簇新策略,可同时满足沉积在电子富集区域、高度分散的非贵金属、界面结合作用强的要求.高角度环形暗场扫描透射电镜、X射线吸收近边缘结构和扩展X射线吸收精细结构结果表明,单分散的过渡金属Ni簇活性位点锚定在石墨氮化碳上.原位光化学还原沉积法制备单分散的Ni簇锚定在石墨氮化碳表面的复合光催化剂,可以实现高效的光催化反应制氢活性,光催化制氢速率达到16.5 mmol·h-1·g-1,并且展现出461.14 h-1的总周转频率(TOF(H2))值,说明单分散的Ni簇提供了大量的活性位点和极大地提高了金属原子利用率.Ni-cluster/CN的C K边缘XAS光谱、N K边缘XAS光谱、XPS光谱和理论计算结果表明,基底物质石墨氮化碳可与单分散的Ni簇形成强且稳定的界面相互作用,其中C可充当电子受体,N可充当电子供体.光致发光光谱、荧光寿命、瞬态光电流、表面光电压和电化学阻抗表明,强且稳定的界面相互作用有效地促进了光生电子和空穴的分离和迁移.本文可为原位光沉积法制备单分散稳定的Ni簇助催化剂、研究助催化剂与半导体载体之间稳定的界面相互作用及用于高效光催化反应提供借鉴.“,”The active sites of monodisperse transition metal Ni-clusters were anchored on carbon nitride (CN) by an in situ photoreduction deposition method to promote the efficient separation of photogener-ated charges and achieve high-efficiency photocatalytic activity for hydrogen evolution. The Ni-cluster/CN exhibited a photocatalytic hydrogen production rate of 16.5 mmol·h-1·g-1 and a total turnover frequency (TOF (H2)) value of 461.14 h-1. X-ray absorption spectroscopy based on syn-chrotron radiation indicated that CN had two reaction centers to form stable interface interactions with monodispersed Ni-clusters, in which carbon can act as an electron acceptor, while nitrogen can act as an electron donor. Meanwhile, the hybrid electronic structure of the Ni-cluster/CN system was constructed, which was favorable for photocatalytic activity for hydrogen production. An in-depth understanding of the interfacial interaction between CN and Ni-clusters will have im-portant reference significance on the mechanistic study of development based on the cocatalyst.
其他文献
本文针对1:50000水系沉积物测量的特点提出两个改进方法,用流域法布点,用色斑图表达测量结果.流域法根据水系流域的实际情况布点,不受网格限制.流域法布点在减少漏控区、减轻采样难度两个方面好于现行的网格法布点.色斑图是在实际采样点位图中绘出每个采样点的控制流域,根据采样点的元素含量值给控制流域赋颜色,以此表示元素含量的分布状况.与等值线图相比,色斑图的异常区直接对应采样点,直接指示矿化岩石的位置,表达更直观;色斑图不进行插值计算,直接使用测量数据成图,漏控区如实地表示为空白,表达更客观.
光催化是一种在能源和环境领域有着重要应用前景的绿色技术,在光照射下可将有机污染物彻底降解为二氧化碳和水,但因缺乏精确调控电荷流动的方法,导致大多数光催化剂活性不高.因此,促进光生电荷的高效分离一直是光催化研究的重要方向.目前多数电荷分离调控研究集中于表面修饰、表面缺陷设计、异质结构建等表面电荷分离改善策略,而对于体相电荷分离调控研究相对较少.卤氧化铋固溶体光催化材料由于独特的层状晶体结构、可调节的带隙结构和优化的电荷分离效率,近年来受到广泛关注.目前对固溶体的体相电荷分离机理尚不清楚.内电场作为一种新的增
铂单原子作为一种新型催化剂,具有活性组分高度分散、配位未饱和以及原子利用率高等特点,在光催化还原CO2方面表现出巨大潜力.但是由于成本高昂和负载量高等因素,极大地限制了其在实际生产中的广泛应用.合成具有低负载量贵金属铂,同时提高铂基单原子催化剂的催化活性仍然是一项巨大挑战.晶化石墨相氮化碳的二维结构,特别是其稳定晶化结构所形成的限域环境及其可扩展的π共轭单元,可以有效锚定金属单原子,因而可作为金属单原子的良好载体.已有的金属单原子载体氮化碳多为弱晶或非晶结构,基于晶化氮化碳的高结晶度和高结构稳定性,合理构
安徽省矿产资源开发由来已久,遗留下来的废弃矿山数量众多、成因复杂,严重破坏了矿山原有生态系统功能.本文基于安徽省废弃矿山空间分布及主要生态环境问题,结合国土空间生态分布特征,提出了废弃矿山生态修复策略.同时,从制度方面提出了相关对策和建议,以期为废弃矿山的生态修复提供技术支撑和决策依据.
岩土工程勘查和地质工程有着直接的影响关系,二者之间存在着密切的联系,均对某个区域进行必要的地质勘测以掌握地质信息.为了更好地将岩土勘察技术应用在施工中,以银雀路(隐贤路-刘庆路)的道路拓宽改造工程为例,对该路段的岩土勘察技术应用现状进行分析.列举工程中需要探查的目的与任务,分析沿途地质测绘、勘探技术、原位测试技术以及实验室分析在城市道路拓宽工程中的应用.总结复杂路面环境下岩土勘查技术的应用标准与应用效果.
随着全球环境问题日益严重以及能源需求的不断增长,人们对高效环境修复与能源转换技术的需求日益增强.以半导体材料为光催化剂,可将可再生的太阳能转化为化学能,有望成为解决人类面临的能源和环境问题的有效途径.其中,开发高效稳定的光催化剂是该技术得以实际应用的关键.近几十年,研究人员开发出多种半导体材料并应用于光催化研究.其中,具有可见光响应的有机非金属光催化剂石墨相氮化碳(g-C3N4)因其稳定的分子结构,较小的禁带宽度(~2.7 eV)以及合适的能带结构而备受关注.然而,与大多数半导体光催化剂相似,由于传统g-
半导体光催化是一种利用半导体将太阳能转换为高能化学能的绿色技术,在可再生清洁能源生产和污染物修复领域有着巨大的应用前景.石墨相氮化碳(g-C3N4)作为一种环境友好的非金属半导体,因其制备工艺简单、来源丰富、热稳定性和化学稳定性好、可见光吸收范围及特殊的电子性能而受到广泛关注.但一般常用氮源前驱体如二氰二胺、三聚氰胺等所制备的块状石墨相氮化碳存在团聚、比表面积小和光生载流子分离效率低等问题,严重抑制了其光催化活性.本文采用前驱体改性法制得具有高效光催化活性的石墨相氮化碳.利用氰基在酸性条件下易水解这一特性
电催化CO2减排技术利用电能将过量的CO2转化为有附加值的化学品,是解决能源危机、实现碳中和的有效途径之一.电催化CO2还原反应(CO2RR)中的多碳产物(C2),如乙烯和乙醇,因其比C1产物具有更高的能量密度和更广泛的应用而受到较大关注.目前为止,Cu基催化剂被认为是获得C2产物的独特材料.研究者在提高Cu基催化剂C2产物的活性和选择性方面做了大量的工作,如催化剂形貌工程、活性位点设计和中间吸附性能调控等.许多理论和实验研究已经证明,Cu基催化剂上的C-C偶联过程是C2产物生成的速率决定步骤.优化C-C
光催化产生太阳燃料因其低成本和零碳排放而成为解决能源危机的研究热点,但光激发载流子对的快速体相复合是需要解决的根本问题.本文在钛酸锶(SrTiO3)纳米纤维上嵌入磷化钴(CoP)和碳化钼(Mo2C)构筑了双助催化剂体系.与纯SrTiO3纳米纤维和二元样品相比,双助催化剂体系显著提高了析氢和二氧化碳还原性能.双助催化剂体系有利于有效促进空间电荷分离并提高光催化性能.此外,SrTiO3与助催化剂之间形成肖特基结,使光激发电子从SrTiO3快速转移到助催化剂,实现了光激发电子的有效分离并延长了光激发电子寿命.通
期刊