论文部分内容阅读
针对自然面部表情识别中的噪声标记问题,提出了一种自适应鲁棒在线度量学习方法。首先,学习新的度量空间以增加不同面部表情的判别性;然后,定义敏感度和特异性来表征每个注释器;最后,引入表示真实类标签的潜在变量,在期望最大化架构中迭代求解距离度量和注释器的可靠性。在MFP和AR人脸数据库上的实验结果表明,相比其他几种较新的方法,本方法在自然表情识别方面能获得更高的识别精度,高兴表情识别率可高达99.7%,并且在一定程度上降低了计算开销。