14.46% Efficiency small molecule organic photovoltaics enabled by the well trade-off between phase s

来源 :能源化学:英文版 | 被引量 : 0次 | 上传用户:liruimei12345
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Small molecule organic photovoltaics(SMPVs) were prepared by utilizing liquid crystalline donor material BTR-Cl and two similar optical bandgap non-fullerene acceptor materials BTP-BO-4 F and Y6.The BTPBO-4 F and Y6 have the similar optical bandgap and di
其他文献
Developing lower-cost and higher-effective catalyst to support hydrogen(H2)production by electrochemical water-splitting has been recognized as a preferred strategy to drive the clean energy utilization.As a credible technology for the synthesi
Carbon-based microassemblies (CMs) have attracted significant attention in numerous applications due to their unique hierarchical structures and delicate buildi
Although one-dimensional Pt nanocrystals have long been regarded as ideal electrode catalysts for fuel cells,the synthetic techniques commonly involve the use of various complicated templates or surfactants,which have largely hampered their large-scale in
Molybdenum oxide/sulfide materials are extensively evaluated as high-capacity anode candidates for lithium ion batteries.However,they suffer from rapid capacity
Lithium-sulfur batteries(LSBs)are being recognized as potential successor to ubiquitous LIBs in daily life due to their higher theoretical energy density and lo
多级孔分子筛因具有良好的水热稳定性、较大的孔体积和短的扩散距离而倍受关注.以L-赖氨酸为介孔造孔剂,采用低、高温两步晶化法可制备多级孔结构的TS-1分子筛,该方法首先通
The large-scale application of sodium ion batteries(SIBs)is limited by economic and environmental fac-tors.Here,we prepare multi-heteroatom self-doped hierarchi
Carbon dioxide (CO2) catalytic reduction has been passionately pursued for a long period of time due to its special importance in alleviating the greenhouse eff
Thanks to low cost,high safety,and large energy density,aqueous zinc-ion batteries have attracted tremendous interest worldwide.However,it remains a challenge t
为提高气井腐蚀防护效果,研发了一种新型缓蚀剂。选用CO2饱和的NaCl-H2O体系,优选缓蚀剂主剂;采用正交试验方法,筛选缓蚀剂助剂。分别采用挂片腐蚀、高温高压动态腐蚀、动电位极化实验方法测试了新型缓蚀剂性能。结果表明:研发的咪唑啉衍生物缓蚀剂主剂H-E无沉淀、无悬浮物、无分层现象,缓蚀效率以及抗点腐蚀能力优于其他四种缓蚀剂主剂。20%缓蚀剂主剂+10%阻垢剂+4%分散剂+3%协同增效剂+63%水合成的新型水溶油分散型气井缓蚀剂缓蚀性能最佳;缓蚀剂助剂影响因素主