论文部分内容阅读
提出了一种基于神经网络PID自适应辨识噪声的移动机器人即时定位与地图创建(SLAM)改进算法。重点对自适应辨识的EKF-SLAM改进算法实现进行了分析,神经网络PID控制器、中值滤波以及噪声调整等组成噪声在线辨识单元。在噪声先验信息不足的情况下,通过自适应在线辨识单元辨识未知系统过程噪声和观测噪声,并迭代修正噪声协方差和平均值滤波新息协方差,实现机器人即时定位精度的在线提高。仿真结果表明,该算法可减小定位误差、降低未知系统过程噪声和观测噪声对SLAM算法的影响。