Identification of the Intrinsic Dielectric Properties of Metal Single Atoms for Electromagnetic Wave

来源 :纳微快报(英文版) | 被引量 : 0次 | 上传用户:wynneyehui
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Atomically dispersed metals on N-doped carbon sup-ports (M-NxCs) have great potential applications in various fields.However,a precise understanding of the definitive relationship between the configuration of metal single atoms and the dielectric loss proper-ties of M-NxCs at the atomic-level is still lacking.Herein,we report a general approach to synthesize a series of three-dimensional (3D)honeycomb-like M-NxC (M =Mn,Fe,Co,Cu,or Ni) containing metal single atoms.Experimental results indicate that 3D M-NxCs exhibit a greatly enhanced dielectric loss compared with that of the NC matrix.Theoretical calculations demonstrate that the density of states of the d orbitals near the Fermi level is significantly increased and additional electrical dipoles are induced due to the destruction of the symmetry of the local microstructure,which enhances conductive loss and dipolar polarization loss of 3D M-NxCs,respectively.Consequently,these 3D M-NxCs exhibit excellent electromagnetic wave absorption properties,outperforming the most commonly reported absorbers.This study systematically explains the mechanism of dielectric loss at the atomic level for the first time and is of significance to the rational design of high-efficiency electromagnetic wave absorbing materials containing metal single atoms.
其他文献
轻烧氧化镁气流床煅烧炉热工行为研究是其热工参数优化、实现节能降耗的必需的基础性工作之一.基于Euler-Lagrange理论建立了某企业轻烧氧化镁气流床煅烧炉数值计算模型,籍此研究了炉内气固流动、传热及分解过程基本规律,并确定了现有产量下的适宜煅烧风量.结果表明:主炉内煅烧烟气旋流上升,温度中心高、壁面低;副炉内旋流效应骤减,温度趋于均匀;距离烟气入口4~18 m行程范围内,气固换热剧烈,物料快速分解,分解率达96%,而后于24 m处分解完全.将煅烧风量降至原有风量的91.22%、气料体积质量比降至1.4
Additive manufacturing-also known as 3D printing-has attracted much attention in recent years as a powerful method for the simple and versatile fabrication of complicated three-dimensional structures.However,the current technology still exhibits a limitat
针对水泥行业使用固废、危废导致其二氧化硫排放浓度超标的问题,通过脱硫试验筛选具有催化作用的三氧化二铁、氧化镁制备成新型高效催化脱硫剂,其脱硫效率高于工业级氢氧化钙.在河南DD水泥有限公司进行了新型高效催化脱硫剂的工业应用试验.结果表明:与工业级氢氧化钙相比,新型高效催化脱硫剂具有更高的脱硫效率,钙硫物质的量比降低了56.7%.通过新型高效催化脱硫剂的使用,可满足水泥企业二氧化硫质量浓度<35 mg/Nm3的超低排放要求,且此过程无废弃物产生.制备的新型高效催化脱硫剂具有广阔的应用前景.
期刊
The electroreduction reaction of CO2 (ECO2RR) requires high-performance catalysts to convert CO2 into useful chemicals.Tran-sition metal-based atomically dispersed catalysts are promising for the high selectivity and activity in ECO2RR.This work presents
开发了一种新型的纳米微晶silicate-1(S-2)的合成方法.与常规的silicate-1(S-1)相比,S-2具有较小的粒径和光滑的晶体表面.当S-2作为晶种合成纳米ZSM-5聚集体时,ZSM-5团聚体为尺寸为0.8~1.0μm的单分散颗粒,构成团聚体的ZSM-5晶体为b轴厚度为60~80 nm的纳米薄片.ZSM-5纳米薄片沿着同一方向规则地堆叠形成独特的孔结构,该孔结构包括1.3 nm的均一孔道和25 nm的宽尺寸孔道.
Flexible pressure sensors with high sensitivity are desired in the fields of electronic skins,human-machine interfaces,and health monitoring.Employing ionic soft materials with microstructured archi-tectures in the functional layer is an effective way tha
In conventional ethylene carbonate (EC)/propylene car-bonate (PC) electrolyte,sodium metal reacts spontaneously and del-eteriously with solvent molecules.This significantly limits the prac-tical feasibility of high-voltage sodium metal batteries based on
The enzyme-mediated elevation of reactive oxygen species (ROS) at the tumor sites has become an emerging strategy for regulating intracellular redox status for anticancer treatment.Herein,we proposed a camouflaged bionic cascaded-enzyme nano-reactor based
The development of lightweight and integration for electronics requires flexible films with high thermal con-ductivity and electromagnetic interference (EMI) shielding to overcome heat accumulation and electromagnetic radiation pollution.Herein,the hierar