蜂窝状C3N4/CoSe2/GA复合光催化剂的制备及CO2还原性能

来源 :高等学校化学学报 | 被引量 : 0次 | 上传用户:huoyong850918
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
以六水金氯化钴、硒粉和尿素为前驱体,通过水热法合成C3N4/CoSe2纳米粒子,再将其锚定在石墨烯气凝胶(Graphene aerogel,GA)表面,制备蜂窝状C3N4/CoSe2/GA光催化剂.采用X射线衍射(XRD)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和紫外-可见漫反射光谱(UV-Vis DRS)等手段对材料的结构、形貌和光学性能进行表征.同时以氙灯作为模拟可见光光源,通过CO2光催化还原为CO考察所制备纳米材料的光催化活性.结果表明,在C3N4纳米片表面
其他文献
采用密度泛函理论研究了双铑催化3-重氮吲哚啉-2-亚胺与2H-吖丙因[3+3]内环化反应过程.该过程主要包含铑金属卡宾体形成、C―N键活化裂解和吲哚啉[3+3]内环化反应.研究结果表明,双铑催化剂发生偶联作用,促进C-N偶联及2H-吖丙因C―N键裂解;反应控速步骤为吲哚[3+3]环化反应过程,铑催化剂在[3+3]环化前脱出.对产物吡嗪并吲哚类化合物光电性质的分析表明产物具有较低空穴重组能,吸收与荧光发射光谱存在较大斯托克斯位移.因此该产物可作为潜在的空穴传输材料和荧光发射材料.
当前素质教育要求高中阶段的英语教学不仅注重学生英语成绩的提高,更应当重视学生英语技能的训练,读写能力的培养作为核心素养的关键一环,对学生以后的英语学习至关重要。高中英语教师不仅要提高学生英语成绩,更要把学生的阅读写作能力培养当做教学的重点任务。只有通过这样的训练才能使学生对英语这门学科不再望而生畏,学生在一次次的阅读实践中可以真正领略英语的魅力,从而达到英语学习事半功倍的效果。
采用水热合成方法制备了2个基于Keggin型杂多酸的无机-有机杂化物,化学式分别为{[Cu2(4,4′-bipy)4(H2O)4](Si Mo12O40)·18H2O}n(1)和{[Cu2(4,4′-bipy)4(H2O)4](PMo6W6O40)·18H2O}n(2)(bipy=bipyridine).结构分析表明2个化合物同构,Cu2+是六配位,分别与4个4,4′-bipy上的N原子和2个水分子上的O原子结合,形成[Cu(4,4′-bipy)2(H2O)2]n2n+二维层状结构.杂多阴离子通过静电与配
研究了低功率超声(US,<38 W)对NaClO氧化非离子型碘代X射线造影剂—碘帕醇(IPM)的增强作用及机理,考察了NaClO添加浓度和超声功率的影响,分析并计算了体系中的主要活性物种及其贡献.采用高效液相色谱/串联质谱(HPLC/MS/MS)对降解产物进行分析,推测IPM的降解路径.结果表明,低功率US显著增强了NaClO对IPM的氧化效果,在25℃,pH=5.8,NaClO浓度为0.12 mmol/L条件下,10 mg/L IPM在60 min的降解率达到85.8%.其中NaClO氧化、HO·
探究性学习是新课改倡导的三大学习方式之一,也是被广泛认可的一种行之有效的学习方式,在高中数学中得到了广泛应用。开展探究性学习可以强化学生主动性,可以变学生被动学习为主动学习,可以提升学生的自主学习能力。
基于高温裂解光刻胶制备的碳薄膜(PPF)是一种新型的性能优异的碳基电极.为了拓展其在功能器件中的应用,利用电化学重氮还原法在PPF电极表面生长了三氟甲基苯胺重氮盐(CF3-PD)和对氨基苯甲醚重氮盐(OCH3-PD)两种组分的混合膜.通过调节两组分溶液在混合膜中的摩尔浓度比例,实现了对PPF电极功函的可控调节.紫外光电子能谱(UPS)和开尔文探针显微镜(KPFM)对修饰前后PPF电极功函(φ)的表征表明,随着混合溶液中CF3-PD组分的摩尔分数从0增至100%,PPF电极的φ(4.75 eV)从4.5 e
本文主要探讨了围绕高中英语学科核心素养中的思维品质,如何开展以单元为依托的学习活动设计。通过整体把握单元主题意义,利用语境创设、语篇分析,引入合作化学习,改善学生学习体验,提升学习效果。
以丙烯酰胺基苯硼酸(AAPBA)、甲基丙烯酸糠酯(FMA)和甲基丙烯酸羟乙酯(HEMA)为单体合成双亲性无规共聚物poly(AAPBA-co-FMA-co-HEMA)(PAFH);PAFH再与碳纳米管(CNTs)发生Diels-Alder反应制备了聚合物共价接枝改性碳纳米管(PAFH-CNTs), PAFH-CNTs经自组装形成复合纳米组装体(PAFH-CNTs NCs).利用扫描电子显微镜和紫外分光光度计测试了PAFH-CNTs NCs的形态及稳定性.将PAFH-CNTs NCs修饰在丝网印刷碳电极(S
近些年,高考作文多为材料作文,提到高中语文作文,不同的人可能会提出不同的疑问。作文分数重要吗?理想中的作文分数是多少?达到理想中的作文分数难吗?高考作文怎么批……而这一切问题会有答案吗?本文基于此做简要分析。
采用生物炼制工业中残渣提取的酶解木质素与乙酸锌在碱性条件下水热复合,制备出低分子量木质素/氧化锌复合物(LWL/ZnO),再通过碳化和酸洗后得木质素纳米炭材料(NLC).通过对其形貌结构进行表征后发现,NLC呈粒径小于50 nm的纳米颗粒结构,比表面积为833.25 m2/g,介孔率高达58.07%,其中孔径约10 nm的介孔发达.电化学性能测试结果表明,NLC作为锂离子电池负极材料具有良好的循环性能和倍率性能,在200 mA/g的电流密度下循环200次后仍能保持705 mA·h/g