其他文献
本文采用多步骤合成路线,分别制备了具有实心、空心和核壳结构的5 V LiNi_(0.5)Mn_(1.5)O_4正极材料微球.同时利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)和红外光谱(FTIR)等分析手段研究了上述材料的结构特征.其中SEM和TEM证实了所制备的镍锰尖晶石微球具有实心、空心和核壳结构.电化学性能测试进一步表明,核壳结构的LiNi_(0.5)Mn_(1
柔性电路是柔性电子与可穿戴设备的重要组成部分,现有柔性电路稳定性与耐久性较差,使得其使用寿命与器件性能被限制.针对此难点,本文受贻贝启发,合成并优化多巴胺共聚物涂层,成功改性了聚酰亚胺(PI)、聚二甲基硅氧烷(PDMS)、聚对苯二甲酸乙二醇酯(PET)、织物等不同柔性衬底的表面润湿性、黏附力与抗刮能力.结合丝网印刷技术和转印技术制成柔性电路,通过循环弯曲测试和抗刮擦测试证明经过该高分子涂层界面改性
低维无机固体材料中电子-电子关联作用导致了许多新奇的相变行为,如金属-绝缘体转变、超导、电荷密度波和巨磁阻效应等.外场调节参量可以改变有序相间的平衡关系,实现不同相之间的转变,诱导新的物理内容甚至全新的量子临界现象,具有巨大的潜力应用于未来先进电子元件和智能响应器件.低维无机相变固体具有极大的比表面积和电子关联性,表面化学修饰为调控其相变和复杂相互作用打开了新的研究空间,有助于低维关联电子体系物理
聚乙二醇(PEG)因其优异的抗蛋白质吸附能力成为抗凝血材料的首选.目前,多数研究都集中在PEG链长和接枝密度对蛋白质吸附的影响,鲜有关注PEG链构象影响的研究.本文利用硫金键在石英晶体微天平金片表面构建了两种不同分子量(MW=1000和MW=5000)的环状(SH-PEG-SH)和线型(m PEG-SH)构象的PEG改性表面,并研究了其抗纤维蛋白原吸附机理和抗凝血性能.X射线光电子能谱仪和原子力显
低维纳米材料具有不同于体相材料的物理化学特性,是未来能源、信息与生物等技术的一个重要载体.结构预测与设计作为材料研究与发展的重要内容之一,在低维纳米材料方面的研究具有重要的意义.本文综述了近年来在低维材料理性设计方面的一些研究进展,主要基于全局结构搜索与分子设计,预测具有独特结构与性能的新型低维材料.结合第一性原理电子结构计算方法,针对特定性能开展结构搜索与设计,预测了一系列新型的光催化材料与自旋
聚合物太阳电池作为第三代光伏技术,具有轻、薄、柔的特点,在未来应用中极具潜力.目前聚合物太阳电池的最高能量转化效率已经超过13%,为未来的产业化发展奠定了基础.为了进一步实现聚合物太阳电池的规模化制备,发展适合于卷对卷印刷工艺的高效率厚膜聚合物太阳电池体系至关重要.本文结合现阶段富勒烯聚合物太阳电池体系、非富勒烯聚合物太阳电池体系和三元聚合物太阳电池体系的最新研究进展,从给受体材料分子设计、光敏层
三维碳结构材料具有轻质、优异的热学和电学性质,良好的机械性能和电化学稳定性等特点,用作电化学储能器件的集流体能够优化电极材料层中的导电网络同时缓解体积膨胀,实现电极能量密度、功率密度和循环稳定性的同时提升,在电化学储能领域展现出了巨大的应用潜力.本文结合本课题组在碳材料方面的部分研究工作,概述了当前三维碳结构集流体在锂离子电池中的最新研究进展.根据三维网络结构基元之间的连接方式,从共价键组装和非共
高分子太阳能电池中的电极界面层对于器件性能十分重要,开发新型电极界面材料是提高器件性能的有效方法.不同于传统的电极界面材料(导电高分子、无机氧化物、金属及其盐、高分子电解质等),我们发展了石墨烯量子点电极界面材料体系.与氧化石墨烯相比,边缘羧基化的石墨烯量子点(EC-GQD)的氧官能团种类单一,因此具有化学修饰可控、性质容易调节的特点,作为阳极/阴极界面材料能实现更高的器件性能.EC-GQD自身具
生化需氧量是评价水质污染情况、水体自净能力的重要指标之一,它能够直接反映水体自净过程中的耗氧需求,也是评价污水处理及大环境修复成效的有力参数之一.然而,国标方法耗时长、误差大、数据滞后.快速检测方法发展四十余年,却鲜有应用.本文归纳总结了现有的快速生化需氧量检测的主要方法及缺陷,并根据本课题组二十余年的科研经历,详细论述了一种基于原位生长微生物膜反应器构建流通式生化需氧量在线监测的新原理、新方法、
生物处理是废水处理的主要技术手段,其中微生物在新陈代谢过程中会分泌一种复杂的高分子混合物——胞外聚合物(EPS),覆盖在微生物表面,它们是影响微生物表面特性的关键物质,在水体环境和废水处理系统中对污染物的迁移转化和去除起着至关重要的作用.研究结果表明,EPS能够利用其丰富的官能团吸附水体中的重金属和有机污染物,还可以通过氢键与氮、磷等营养元素发生相互作用.另外EPS具有一定的氧化还原特性,可以通过