论文部分内容阅读
摘要:粉末活性炭吸附水中溶质分子是一个复杂的过程,是几种力综合作用的结果,包括离子吸引力、范德华力、化学杂和力。根据吸附的双速率扩散理论认为,吸附是一个由迅速扩散和缓慢扩散两阶段构成的双速过程,迅速扩散在数小时内即完成,发挥了60%-80%活性炭的吸附容量。迅速扩散是溶质分子在碳粒内沿径向均匀分布的阻力小的大孔隙中扩散的过程。这些大孔隙产生径向的扩散阻力。当分子从大孔进一步进入与大孔相通的微孔中扩散时,由于受到狭窄孔径所产生的很大阻力,从而极为缓慢。微孔也是在碳粒内均匀分布,但不构成径向的扩散阻力。影响粉末活性炭吸附的因素涉及溶质分子极性、分子量大小、空间结构,这一点取决于水源水质的特征。活性炭对不同的物质分子具有选择吸附性。
关键词:粉末活性炭;酚类;突发性水污染;处理;应用研究
一、粉末活性炭的净水效能研究
(一)投加工艺的选择
国外专家曾对粉末活性炭的应用情况进行分析研究,认为粉末活性炭对人工合成化学物的吸附去除主要取决于该化合物的类型。在选择投加点时,必须考虑混合程度和处理接触时间,尽量减少水处理药剂对吸附的干扰。根据国内某水厂近年应用粉末活性炭的经验认为,对于有生活污水、工业污水的排放,造成水体富营养化,导致水体藻类等微生物急剧繁殖等,属于污染较严重、较为复杂的水源;枯水期时常散发成分复杂的异臭、异味,再加上取水河段为潮感河流,污水回荡时间长,污染造成的危害较大。选取投加粉末活性炭工艺时,主要考虑:
(1)投加点要有充足的搅拌条件,使粉末活性炭能快速与处理水有良好的混合接触。
(2)尽量延长粉末活性炭与水体接触吸附时间,充分利用粉末活性炭的吸附能力,提高吸附率。
(3)尽量选取粒径小的粉末活性炭,使同等重量的活性炭吸附面积相对大;选取中孔较发达的木质活性炭,力求提高活性炭对有机物的吸附效能。
(4)尽量减小水处理过程中的化学药品干扰,如氯、高锰酸钾、混凝剂等。
(5)要根据投加量的多少、场地条件选取干式或湿式投加。
(二)投加粉末活性炭明显改善出水水质
(1)投加粉末活性炭对去除色度有明显效果。色度的去除有报道可达70%,色度低表明去除有机物的效率高,除铁、锰的效果好。但去除色度的效果并没有和投加活性炭量成正比,其复杂的机理,还有待下一步研究。
(2)投加粉末活性炭對去除嗅味有明显效果。南方某水体的富营养化水体不仅是藻类繁殖和杀灭过程产生的异臭,还面对复杂的工业排污污染,水体长期酚类物质的异常浓度所引起的异臭。由于致臭物质的动态性和不确定性,故臭味的定量分析成为十分艰难的课题,设想要经过多年对特定水体的调查研究,设立相关的数学模型,设立相应的分析方法,才能逐步解决。目前臭味的检测一般是用人的感官去鉴定,人为的误差较大。除臭是粉末活性炭去除污染物的一个重要的综合评价指标,也是供水行业目前面临的确保饮用水安全的极其重要、难度相当大的感官指标。
(3)投加粉末活性炭对酚类的去除有良好的效果。上世纪30年代,国外已有采用粉末活性炭吸附焦化厂废水中苯酚的工艺。根据水厂的应用经验,认为在原水挥发性酚在0.005mg/L以下,投加粉末活性炭20mg/L以下,可以有效地去除;若原水挥发性酚在0.005mg/L以上,0.01mg/L以下,可明显减低出厂水挥发性酚含量;但原水挥发性酚大于0.01mg/L时,单靠投加粉末活性炭,难以得到良好的去除效果。粉末活性炭对酚类的去除效果,是综合评价吸附能力的重要指标,对于酚类污染严重的水体尤为重要。
以苯酚和多种氯酚(CPs)为代表的酚类是一类重要的有机污染物。针对饮用水突发性酚类污染物控制,考察了粉末活性炭(PAC)吸附工艺对苯酚及CPs的去除效果,并讨论了主要影响因素。结果表明,对CPs和苯酚的吸附反应可在10~60 min、300 min内完成,吸附速率从快到慢依次为TCP、MCP、DCP、PCP和苯酚。由于酚羟基(Ar—OH)电离作用受到影响,在3~11范围内去除率随pH值升高而降低。少量腐殖酸对吸附影响不大,但TOC质量浓度超过10 mg/L时腐殖酸可产生明显竞争吸附作用。热力学拟合表明,吸附反应符合Freundlich和Langmuir吸附等温式,苯酚/CPs在PAC上的吸附过程以物理吸附为主,且为放热反应,较低温度有利于吸附反应的进行。相比于准一级反应和孔内扩散反应,准二级动力学方程可较好地描述吸附过程。将PAC用于中山市某饮用水源的模拟突发性污染应急处理,投加10 mg/L的PAC即可有效去除原水中超过饮用水标准3~5倍的CPs类污染物,同时水处理成本仅有少量增加。
二、粉末活性炭的吸附性能评价研究
经过研究发现:碘值、亚甲蓝值只能够表明活性炭颗粒中细小孔径的比表面积大小,但是在实际生产中有吸附速率的问题,即净水工艺中吸附时间是有限的,水处理中应用的粉末活性炭远未达到完全吸附平衡。活性炭颗粒内部中等孔隙是有机物分子的进入通道,一般认为活性炭的中等孔隙越发达越有利于吸附动力学平衡,所以中孔是否发达决定了吸附速率。为了结合实际应用,我们不仅考虑粉末活性炭的总吸附比表面积(也就是碘值、亚甲蓝值等指标),还要判断粉末活性炭颗粒内部的孔径分布是否容易达到快速吸附,即明确转化为如何评价活性炭的孔径分布是否合理。
三、小结
随着净水深度处理工艺的推广和活性炭生物滤池的应用,虽然颗粒活性炭表现出良好的工艺性,但粉末活性炭吸附循环时间较短,投加方式较为简捷,费用较低,可根据水体污染情况随时更换碳种,仍是其突出的优点。对于固有工艺的水厂改善出水水质,对于突发污染事故的迅速处理,是颗粒活性炭无法取代的功能。所以,随着国内水体环境的不断恶化,水质要求的不断提升,在水处理行业应用粉末活性炭的范围将会不断扩大。逐渐从迫不得已的应急事故处理应用,转向为提高和改善水质的应用。粉末活性炭在水处理的应用会越来越广,将为防治污染,改善饮用水水质,做出重要的贡献。
参考文献:
[1]张乐、王欢.城市供水系统应急技术指导手册[M].北京:中国建筑工业出版社2010.
[2]洪景涛.长江下游区域水源突发性污染应急供水处理[J].山西建筑,2010(12):168-169.
关键词:粉末活性炭;酚类;突发性水污染;处理;应用研究
一、粉末活性炭的净水效能研究
(一)投加工艺的选择
国外专家曾对粉末活性炭的应用情况进行分析研究,认为粉末活性炭对人工合成化学物的吸附去除主要取决于该化合物的类型。在选择投加点时,必须考虑混合程度和处理接触时间,尽量减少水处理药剂对吸附的干扰。根据国内某水厂近年应用粉末活性炭的经验认为,对于有生活污水、工业污水的排放,造成水体富营养化,导致水体藻类等微生物急剧繁殖等,属于污染较严重、较为复杂的水源;枯水期时常散发成分复杂的异臭、异味,再加上取水河段为潮感河流,污水回荡时间长,污染造成的危害较大。选取投加粉末活性炭工艺时,主要考虑:
(1)投加点要有充足的搅拌条件,使粉末活性炭能快速与处理水有良好的混合接触。
(2)尽量延长粉末活性炭与水体接触吸附时间,充分利用粉末活性炭的吸附能力,提高吸附率。
(3)尽量选取粒径小的粉末活性炭,使同等重量的活性炭吸附面积相对大;选取中孔较发达的木质活性炭,力求提高活性炭对有机物的吸附效能。
(4)尽量减小水处理过程中的化学药品干扰,如氯、高锰酸钾、混凝剂等。
(5)要根据投加量的多少、场地条件选取干式或湿式投加。
(二)投加粉末活性炭明显改善出水水质
(1)投加粉末活性炭对去除色度有明显效果。色度的去除有报道可达70%,色度低表明去除有机物的效率高,除铁、锰的效果好。但去除色度的效果并没有和投加活性炭量成正比,其复杂的机理,还有待下一步研究。
(2)投加粉末活性炭對去除嗅味有明显效果。南方某水体的富营养化水体不仅是藻类繁殖和杀灭过程产生的异臭,还面对复杂的工业排污污染,水体长期酚类物质的异常浓度所引起的异臭。由于致臭物质的动态性和不确定性,故臭味的定量分析成为十分艰难的课题,设想要经过多年对特定水体的调查研究,设立相关的数学模型,设立相应的分析方法,才能逐步解决。目前臭味的检测一般是用人的感官去鉴定,人为的误差较大。除臭是粉末活性炭去除污染物的一个重要的综合评价指标,也是供水行业目前面临的确保饮用水安全的极其重要、难度相当大的感官指标。
(3)投加粉末活性炭对酚类的去除有良好的效果。上世纪30年代,国外已有采用粉末活性炭吸附焦化厂废水中苯酚的工艺。根据水厂的应用经验,认为在原水挥发性酚在0.005mg/L以下,投加粉末活性炭20mg/L以下,可以有效地去除;若原水挥发性酚在0.005mg/L以上,0.01mg/L以下,可明显减低出厂水挥发性酚含量;但原水挥发性酚大于0.01mg/L时,单靠投加粉末活性炭,难以得到良好的去除效果。粉末活性炭对酚类的去除效果,是综合评价吸附能力的重要指标,对于酚类污染严重的水体尤为重要。
以苯酚和多种氯酚(CPs)为代表的酚类是一类重要的有机污染物。针对饮用水突发性酚类污染物控制,考察了粉末活性炭(PAC)吸附工艺对苯酚及CPs的去除效果,并讨论了主要影响因素。结果表明,对CPs和苯酚的吸附反应可在10~60 min、300 min内完成,吸附速率从快到慢依次为TCP、MCP、DCP、PCP和苯酚。由于酚羟基(Ar—OH)电离作用受到影响,在3~11范围内去除率随pH值升高而降低。少量腐殖酸对吸附影响不大,但TOC质量浓度超过10 mg/L时腐殖酸可产生明显竞争吸附作用。热力学拟合表明,吸附反应符合Freundlich和Langmuir吸附等温式,苯酚/CPs在PAC上的吸附过程以物理吸附为主,且为放热反应,较低温度有利于吸附反应的进行。相比于准一级反应和孔内扩散反应,准二级动力学方程可较好地描述吸附过程。将PAC用于中山市某饮用水源的模拟突发性污染应急处理,投加10 mg/L的PAC即可有效去除原水中超过饮用水标准3~5倍的CPs类污染物,同时水处理成本仅有少量增加。
二、粉末活性炭的吸附性能评价研究
经过研究发现:碘值、亚甲蓝值只能够表明活性炭颗粒中细小孔径的比表面积大小,但是在实际生产中有吸附速率的问题,即净水工艺中吸附时间是有限的,水处理中应用的粉末活性炭远未达到完全吸附平衡。活性炭颗粒内部中等孔隙是有机物分子的进入通道,一般认为活性炭的中等孔隙越发达越有利于吸附动力学平衡,所以中孔是否发达决定了吸附速率。为了结合实际应用,我们不仅考虑粉末活性炭的总吸附比表面积(也就是碘值、亚甲蓝值等指标),还要判断粉末活性炭颗粒内部的孔径分布是否容易达到快速吸附,即明确转化为如何评价活性炭的孔径分布是否合理。
三、小结
随着净水深度处理工艺的推广和活性炭生物滤池的应用,虽然颗粒活性炭表现出良好的工艺性,但粉末活性炭吸附循环时间较短,投加方式较为简捷,费用较低,可根据水体污染情况随时更换碳种,仍是其突出的优点。对于固有工艺的水厂改善出水水质,对于突发污染事故的迅速处理,是颗粒活性炭无法取代的功能。所以,随着国内水体环境的不断恶化,水质要求的不断提升,在水处理行业应用粉末活性炭的范围将会不断扩大。逐渐从迫不得已的应急事故处理应用,转向为提高和改善水质的应用。粉末活性炭在水处理的应用会越来越广,将为防治污染,改善饮用水水质,做出重要的贡献。
参考文献:
[1]张乐、王欢.城市供水系统应急技术指导手册[M].北京:中国建筑工业出版社2010.
[2]洪景涛.长江下游区域水源突发性污染应急供水处理[J].山西建筑,2010(12):168-169.