Inhibition of microRNA-29b suppresses oxidative stress and reduces apoptosis in ischemic stroke

来源 :中国神经再生研究(英文版) | 被引量 : 0次 | 上传用户:yangpengjx
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
MicroRNAs (miRNAs) regulate protein expression by antagonizing the translation of mRNAs and are effective regulators of normal nervous system development, function, and disease. MicroRNA-29b (miR-29b) plays a broad and critical role in brain homeostasis. In this study, we tested the function of miR-29b in animal and cell models by inhibiting miR-29b expression. Mouse models of middle cerebral artery occlusion were established using the modified Zea-Longa suture method. Prior to modeling, 50 nmol/kg miR-29b antagomir was injected via the tail vein. MiR-29b expression was found to be abnormally increased in ischemic brain tissue. The inhibition of miR-29b expression decreased the neurological function score and reduced the cerebral infarction volume and cell apoptosis. In addition, the inhibition of miR-29b significantly decreased the malondialdehyde level, increased superoxide dismutase activity, and Bcl-2 expression, and inhibited Bax and Caspase3 expression. PC12 cells were treated with glutamate for 12 hours to establish in vitro cell models of ischemic stroke and then treated with the miR-29 antagomir for 48 hours. The results revealed that miR-29b inhibition in PC12 cells increased Bcl-2 expression and inhibited cell apoptosis and oxidative damage. These findings suggest that the inhibition of miR-29b inhibits oxidative stress and cell apoptosis in ischemic stroke, producing therapeutic effects in ischemic stroke. This study was approved by the Laboratory Animal Care and Use Committee of the First Affiliated Hospital of Zhengzhou University (approval No. 201709276S) on September 27, 2017.
其他文献
Tobacco smoking is considered to be one of the main risk factors in the development of chronic pain. Long-term chronic exposure to nicotine and other forms of tobacco have been shown to be associated with an increased incidence of pain. Studies have shown
Studies have shown that downregulation of nuclear-enriched autosomal transcript 1 (Neat1) may adversely affect the recovery of nerve function and the increased loss of hippocampal neurons in mice. Whether Neat1 has protective or inhibitory effects on neur
Peripheral nerve injury repair requires a certain degree of cooperation between axon regeneration and Wallerian degeneration.Therefore, investigating how axon regeneration and degeneration work together to repair peripheral nerve injury may uncover the mo
Lower extremity nerve transposition repair has become an important treatment strategy for peripheral nerve injury; however, brain changes caused by this surgical procedure remain unclear. In this study, the distal stump of the right sciatic nerve in a rat
In recent years, the increase of psychopathological disorders in the population has become a health emergency, leading to a great effort to understand psychological vulnerability mechanisms. In this scenario, the role of the autonomic nervous system (ANS)
Clinically, peripheral nerve reconstructions in neonates are most frequently applied in brachial plexus birth injuries. Most surgical concepts, however, have investigated nerve reconstructions in adult animal models. The immature neuromuscular system reac
Body weight-supported treadmill training with the voluntary driven exoskeleton (VDE-BWSTT) has been shown to improve the gait function of patients with chronic spinal cord injury. However, little is known whether VDE-BWSTT can effectively improve the trun
Excess extracellular glutamate leads to excitotoxicity, which induces neuronal death through the overactivation of N-methyl-D-aspartate receptors (NMDARs). Excitotoxicity is thought to be closely related to various acute and chronic neurological disorders
Baicalin is a natural active ingredient isolated from Scutellariae Radix that can cross the blood-brain barrier and exhibits neuroprotective effects on multiple central nervous system diseases. However, the mechanism behind the neuroprotective effects rem
Ghrelin is a neuropeptide that has various physiological functions and has been demonstrated to be neuroprotective in a number of neurological disease models. However, the underlying mechanisms of ghrelin in Parkinson\'s disease remain largely unexplore