论文部分内容阅读
题 求函数 y=(sin3xsin~3x+cos3xcos~x)/(cos~22x)+sin2x的最小值。 这是一道源于教材的好题,解题关键是化简sin3x sin~3z+cos3xcos~3ax,其原型是高中《代数》(上册)189页例5。
Find the minimum value of the function y=(sin3xsin~3x+cos3xcos~x)/(cos~22x)+sin2x. This is a good question originating from the teaching material. The key to solve the problem is to simplify sin3x sin~3z+cos3xcos~3ax. The prototype is the 189-page example 5 of the algebra of high school (Volume 1).