Improving the stability of metal halide perovskite solar cells from material to structure

来源 :能源化学 | 被引量 : 0次 | 上传用户:liongliong496
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Metal halide perovskites (MHPs) are promising photovoltaic (PV) materials owing to their advantages such as high carrier mobility, excellent absorption coefficient, bandgap tenability, long diffusion length, and low material cost. These qualities have increased the efficiency of MHP solar cells tO23.3%. However, MHPs are hindered by a lack of stability. In addition, the applications of MHP solar cells are restricted by the instability of perovskite materials and devices. In this article, the most urgent stability problems faced by perovskite solar cells are identified, and recent progresses in MHPs are enumerated. The factors affecting the stability of perovskite materials and devices are also discussed. We analyzed the thermal and humid stability of perovskite materials in terms of transporting materials and their interface. In view of these recent advances, future works should focus on the large-scale application of MHP solar cells.
其他文献
The uniformly dispersed transition metal (Co,Ni and Fe) nanoparticles supported on the surface of La-promoted MgO were prepared via a deposition-precipitation method for hydrogen production from catalytic decomposition of ammonia.X-ray diffraction,N2 adso
In this work,the hydrogen sorption properties of the LiBH4-Mg2NiH4 composite system with the molar ratio 2∶2.5 were thoroughly investigated as a function of the applied temperature and hydrogen pressure.To the best of our knowledge,it has been possible to
Cubic phase Li7La3Zr2O12 (LLZO),a member of the Li-Garnet family,is a promising solid electrolyte and has been widely studied in recent years.However,LLZO samples prepared via conventional ambient air sintering reported in the published literature often c
Asphaltenes,complex aromatic compounds from various carbonaceous sources,could be obtained by solvent dissolution,filtration and adsorption.It was difficult to clarify the molecular structures and chemical properties of asphaltene due to its structural si
Solid sorbents with enhanced capacity and selectivity towards CO2 are crucial in the design of an efficient capture process.Among the possible alternatives,K2CO3-doped activated carbons have shown high CO2 capture capacity and rapid carbonation reaction r
A Zn-air battery is a potential next-generation energy storage device owing to its extremely high theo retical energy density.Currently,it is important to explore non-precious metal electrocatalysts with high electroactivity and stability in the oxygen re
IrO2 and IrRuOx (Ir∶Ru 60∶40 at%),supported by 50 wt% onto titania nanotubes (TNTs) and (3 at% Nb) Nb-doped titania nanotubes (Nb-TNTs),as electrocatalysts for the oxygen evolution reaction (OER),were synthesized and characterized by means of structural,s
Kesterite structure semiconductor Cu2ZnSn(S,Se)4 is one of the most promising candidate as a light absorber material to overtake the next generation of thin film solar cells,owing to its low cost,non-toxic,and earth abundant source materials.The Shockley-
Li 4 SiO4 has been regarded as one of the most promising high-temperature CO2 sorbents. However, for practical applications, its CO2 sorption kinetics, cycling stability and sorption properties at lower temper-atures or lower CO2 concentrations have to be
Binghai Dong received his bachelor\'s degree and master\'s degree in the Materials Science & Engineering School in Wuhan University of Technology in 1995 and 2002, respectively, and Ph.D. degree from Hubei University in 2011. After working for 8 years