Additives in metal halide perovskite films and their applications in solar cells

来源 :能源化学 | 被引量 : 0次 | 上传用户:aqgcsw2
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
The booming growth of organic-inorganic hybrid lead halide perovskite solar cells have made this promis-ing photovoltaic technology to leap towards commercialization. One of the most important issues for the evolution from research to practical application of this technology is to achieve high-throughput manufac-turing of large-scale perovskite solar modules. In particular, realization of scalable fabrication of large-area perovskite films is one of the essential steps. During the past ten years, a great number of approaches have been developed to deposit high quality perovskite films, to which additives are introduced during the fabrication process of perovskite layers in terms of the perovskite grain growth control, defect re-duction, stability enhancement, etc. Herein, we first review the recent progress on additives during the fabrication of large area perovskite films for large scale perovskite solar cells and modules. We then fo-cus on a comprehensive and in-depth understanding of the roles of additives for perovskite grain growth control, defects reduction, and stability enhancement. Further advancement of the scalable fabrication of high-quality perovskite films and solar cells using additives to further develop large area, stable per-ovskite solar cells are discussed.
其他文献
Development of active and non-noble metal-based catalyst for H2 production via NH3 decomposition is crucial for the implementation of NH3 as a H2 carrier. Co-based catalysts have received increasing at-tention because of its high intrinsic activity and mo
Lithium-ion batteries (LIBs) have greatly facilitated our daily lives since 1990s [1,2]. To meet the ever-increasing demand on energy density, Li metal is seen as the ultimate anode because of its ultra-high specific capacity (3860 mAh/g) and the lowest e
采用金相砂纸打磨及盐酸(HC1)溶液刻蚀的铝箔为模板,以高密度聚乙烯(HDPE)/三元乙丙橡胶(EPDM)热塑性硫化胶(TPV)为原材料,通过模板法在TPV表面构建出超疏水表面,并对其表面结构与超疏水行为进行了研究.FE-SEM表明,经模压和模板剥离后的TPV表面产生了大量塑性形变,获得复杂的粗糙结构;润湿性测试显示,该TPV粗糙表面与水的接触角大于150°,且滚动角小于5°,根据Cassie模型计算出超疏水表面与水的接触界面中气-液界面的面积分数超过85%,表现出良好的超疏水性能.
The chemical and electrochemical stability of lanthanide nickelates La2NiO4+δ (LNO), Pr2NiO4+δ (PNO) and their mixed compounds La2-xPrxNiO4+δ (LPNOs) with x= 0.5, 1 or 1.5 is reported. The aim is to promote these materials as efficient electrodes for soli
The development of high-efficiency and low-cost bifunctional oxygen electrocatalysts is critical to enlarge application of zinc-air batteries(ZABs).However,it still remains challenges due to their uncon-trollable factor at atomic level during the catalyst
Chemical looping technology holds great potential on efficient CO2 splitting with much higher CO pro-duction and CO2 splitting rate than photocatalytic processes. Conventional oxygen carrier requires high temperature (typically 850–1000 ℃) to ensure suffi
在Gleeble-3800热模拟机上采用等温压缩实验研究了N08800铁镍基合金(/%:0.015C,20.8Cr,31.2Ni,0.42Al,0.35Ti)的高温压缩变形行为.获得合金在温度为1150~1280℃、应变速率为1~20 s-1条件下的真应力-真应变曲线.通过线性回归得到N08800合金的高温材料常数a为0.0092,n为4.34,热变形激活能Q为432780J/mol,建立了N08800合金的热变形峰值本构模型.结果 表明,N08800合金在热压缩变形过程中,高温低应变速率下,动态再结晶容
Metal selenides owing to their high theoretical capacity and good conductivity are considered as one of the potential candidates for the anode materials of sodium-ion batteries (SIBs). However, their practical applications are greatly restricted by the po
Quantitative behavior of non-equilibrium excitation by direct electron impact in low-temperature dry reforming of methane was investigated by integrated studies of experimental validation and kinetic mod-eling. A plasma chemistry kinetic mechanism incorpo
It is highly desirable to design and synthesize two-dimensional nanostructured electrode materials with high electrical conductivity, large electrolyte-accessible surface area and more exposed active sites for energy storage applications. Herein, MXene/Co