论文部分内容阅读
[摘要]目的 探討组蛋白去甲基化酶JMJD2B对卵巢癌细胞增殖的影响及其机制。方法 应用JMJD2B siRNA和control siRNA转染人正常卵巢上皮IOSE80细胞和卵巢癌SKOV3细胞,实时荧光定量PCR和蛋白印迹法分别检测细胞中JMJD2B、环氧化酶2(COX2)mRNA和蛋白的表达水平。采用细胞克隆形成实验方法检测SKOV3细胞的增殖情况。选取20例卵巢癌病人的癌组织及癌旁正常组织,应用实时荧光定量PCR方法检测并比较两种组织中JMJD2B和COX2的mRNA表达水平。结果 与IOSE80细胞比较,SKOV3细胞中JMJD2B、COX2的mRNA和蛋白水平均升高,差异有显著性(t=13.74~19.34,P<0.05)。JMJD2B siRNA转染SKOV3细胞后可以显著下调JMJD2B和COX2 mRNA的表达水平(t=4.97~7.56,P<0.05),细胞的克隆形成能力明显降低;而高表达COX2可以部分恢复细胞的克隆形成能力(F=58.23,P<0.05)。双荧光素酶实验结果显示,抑制JMJD2B的表达可以明显降低COX2的启动子活性(t=35.48,P<0.01)。人卵巢癌组织中JMJD2B和COX2的mRNA表达水平较癌旁组织显著升高(t=85.42、85.11,P<0.05),且二者呈正相关(R2=0.983,95%CI=0.984~0.995,P<0.01)。结论 降低JMJD2B水平可通过抑制COX2表达进而抑制人卵巢癌细胞的增殖。
[关键词]卵巢肿瘤;组蛋白去甲基化酶;环氧化酶2;细胞增殖
[中图分类号]R73-354
[文献标志码]A
[文章编号]2096-5532(2021)02-0250-05
[ABSTRACT]Objective To investigate the effect of the histone demethylase JMJD2B on the proliferation of ovarian cancer cells and the related mechanism. Methods JMJD2B siRNA and control siRNA were transfected into normal human ovarian epithelial IOSE80 cells and ovarian cancer SKOV3 cells, and quantitative real-time PCR and Western blot were used to measure the mRNA and protein expression levels of JMJD2B and COX2 in these cells. Colony-forming assay was used to measure the proliferation of SKOV3 cells. Cancer tissue and normal adjacent tissue were collected from 20 patients with ovarian cancer, and quantitative real-time PCR was used to measure the mRNA expression levels of JMJD2B and COX2. Results Compared with IOSE80 cells, SKOV3 cells showed significant increases in the mRNA and protein expression levels of JMJD2B and COX2 (t=13.74-19.34,P<0.05). After SKOV3 cells were transfected with JMJD2B siRNA, there were significant reductions in the mRNA expression levels of JMJD2B and COX2 (t=4.97-7.56,P<0.05) and colony-forming ability, while the high expression of COX2 partially restored the colony-forming ability (F=58.23,P<0.05). The results of dual luciferase assay showed that the inhibition of JMJD2B expression significantly reduced the promoter activity of COX2 (t=35.48,P<0.01). The mRNA expression levels of JMJD2B and COX2 in human ovarian cancer tissue were significantly higher than those in adjacent tissue (t=85.42,85.11;P<0.05), with positive correlation between them (R2=0.983,95%CI=0.984 to 0.995,P<0.01). Conclusion The reduction of JMJD2B can inhibit the proliferation of human ovarian cancer cells by inhibiting the expression of COX2. [KEY WORDS]ovarian neoplasms; JMJD2B; cyclooxygenase 2; cell proliferation
JMJD2B是新近研究发现的一種组蛋白去甲基化酶,可调节染色质结构或基因表达[1]。多项研究发现,JMJD2B在多种肿瘤如乳癌、胃癌、结肠癌的发生发展过程中发挥重要作用[2-5]。前期研究发现,JMJID2B在卵巢癌组织中高表达,提示JMJD2B与卵巢癌的发生发展密切相关。然而,JMJD2B介导卵巢癌细胞恶性转化的相关分子机制研究甚少。环氧化酶2(COX2)是一种促进细胞增殖和侵袭转移及抑制细胞凋亡的炎性细胞因子[6-9]。已有研究结果发现,COX2的表达受表观遗传学修饰的调控,例如组蛋白修饰、DNA甲基化等[10-13]。还有研究发现,COX2的DNA甲基化与胃癌、非小细胞肺癌、膀胱异型细胞癌等恶性肿瘤的发生发展以及预后密切相关,特别是COX2的高度甲基化预示肿瘤的不良预后[10,14-17]。本研究观察抑制人卵巢癌细胞JMJD2B表达后COX2水平的变化,以及靶向抑制JMJD2B 表达对卵巢癌细胞增殖的影响,探讨JMJD2B促进卵巢癌细胞恶性转化的作用及其相关机制。现将结果报告如下。
1 材料与方法
1.1 实验材料
人卵巢癌细胞株SKOV3(购自济南市人民医院),人正常卵巢上皮细胞株IOSE80(购于中国上海慧颖生物科技有限公司);胎牛血清、DMEM和DMEM/F12培养基(Gibco公司,美国);JMJD2B siRNA和control siRNA(Invitrogen公司,美国),JMJD2B siRNA序列为5′-UCUCCAUCACCUG-CCUCAAGCACAA-3′,control siRNA为5′-CCU-ACAUCCCGAUCGAUGAUGUUGA-3′;转染试剂脂质体Lipofectamine 2000(Invitrogen公司,美国);反转录试剂盒(Thermo Scientific公司,美国),实时荧光定量PCR试剂盒(Takara公司,日本);BCA蛋白定量试剂盒(碧云天生物技术公司,中国);JMJD2B抗体(Bethyl Laboratories公司,美国),COX2抗体(Cayman chemical公司,美国),β-actin抗体(Santa Cruz Biotechnology公司,美国);辣根过氧化物酶标记的抗兔、抗鼠二抗(Jackson ImmunoResearch公司,美国);ECL化学发光检测试剂盒(Millipore公司,美国),COX2高表达质粒和COX2启动子质粒(上海浩然生物技术有限公司)。卵巢癌病人手术切除的癌组织及癌旁正常组织标本各20例(济南市人民医院)。
1.2 实验方法
1.2.1 细胞培养 SKOV3细胞和IOSE80细胞分别在含有体积分数0.10胎牛血清的DMEM培养基和DMEM/F12培养基中,于37 ℃、体积分数0.05 CO2 条件下传代培养。
1.2.2 转染 将对数生长期SKOV3细胞以每孔2×105个接种至6孔板中培养,待细胞达60%~80%融合时进行转染。参照转染试剂说明,分别将JMJD2B siRNA、control siRNA或COX2高表达质粒转染入细胞内,培养48 h后收集细胞。
1.2.3 RNA的提取、反转录及实时荧光定量PCR检测 应用RNA提取试剂盒提取细胞或者组织总RNA,逆转录生成cDNA,将所得cDNA保存于-20 ℃冰箱备用。以cDNA为模板,在TaqDNA聚合酶作用下行PCR扩增反应。所用引物及其序列见表1。PCR反应体系10 μL,内含2×SYBR Green Mixture 5.0 μL,2.5 μmol/L正反向引物各1.0 μL,cDNA 1.0 μL,加ddH2O补足体积至10.0 μL。PCR条件:95 ℃、15 s,60 ℃、30 s,74 ℃、30 s,在Bio-Rad CFX96荧光定量PCR仪上扩增40个循环后收集荧光数据。
1.2.4 蛋白印迹法检测 应用RIPA裂解细胞,在冰上静置30 min,以12 000 r/min离心10 min,取蛋白上清检测质量浓度后,取40 μg上样,在体积分数0.10的SDS-PAGE中电泳分离(电压50 V,时间250 min),电转至PVDF膜(电流250 mA,时间190 min),以50 g/L的脱脂奶粉室温封闭60 min,加一抗(JMJD2B,1∶1 000稀释;COX2,1∶100稀释;β-actin,1∶1 000稀释)4 ℃过夜孵育,PBST漂洗3次,每次5 min,再加入HRP标记的二抗室温孵育60 min,PBST漂洗3次,每次5 min,加入ECL化学发光工作液室温孵育2~3 min,暗室中曝光、显影、定影,扫描拍照后保存数据。
1.2.5 细胞克隆形成实验 SKOV3细胞接种至细胞板,将JMJD2B siRNA转染至细胞,24 h后行COX2启动子载体转染,同时转染pRL-TK作为内参。转染48 h后,弃去培养液,PBS洗涤3次,Passive Lysis Buffer裂解细胞。最后用荧光素酶报告基因分析仪检测荧光素酶的活力。
1.3 统计学方法
采用SPSS 17.0软件进行统计学分析,计量资料数据以x2±s表示,两组数据间比较采用t检验,多组比较采用ANOVA分析。以P<0.05表示差异有统计学意义。
2 结 果
2.1 IOSE80细胞和SKOV3细胞中JMJD2B和COX2表达比较
SKOV3细胞中JMJD2B、COX2的mRNA和蛋白表达均明显高于IOSE80细胞,差异有统计学意义(t=13.74~19.34,P<0.05)。见图1。 2.2 转染JMJD2B siRNA对COX2表达的影响
实时荧光定量PCR检测和蛋白印迹法的检测结果显示,SKOV3细胞转染JMJD2B siRNA后,JMJD2B和COX2的mRNA和蛋白表達均降低,差异有显著性(t=4.97~7.56,P<0.05)。见图2。
2.3 抑制JMJD2B的表达对COX2启动子表达的影响
双荧光素酶实验结果显示,抑制JMJD2B的表达可以明显降低COX2的表达,差异有显著性(t=35.48,P<0.01)。见图3。
2.4 JMJD2B和COX2表达对SKOV3细胞克隆形成能力的影响
细胞克隆形成实验结果显示,SKOV3细胞转染JMJD2B siRNA后细胞的克隆形成能力明显减弱,而高表达COX2可以部分恢复细胞的克隆形成能力(F=58.23,P<0.01)。见图4。
2.5 人卵巢癌组织及其癌旁组织中JMJD2B和COX2 mRNA表达关系
与癌旁组织相比,卵巢癌组织中JMJD2B和COX2的mRNA表达均显著升高(t=85.42,P<0.05),且两者表达水平呈正相关关系(R2=0.983,95%CI=0.984~0.995,P<0.01)。见图5。
3 讨 论
肿瘤的发生、发展是一个多因素参与、多步骤演进的复杂病理过程,涉及信号通路转导异常和基因表达调控异常,其中表观遗传学调控机制在肿瘤发生发展中的作用越来越受到关注。表观遗传学调控主要包括组蛋白修饰、DNA甲基化、染色体重塑和非编码RNAs等,其中组蛋白修饰是表观遗传学的重要调控机制[18-19]。组蛋白修饰主要有磷酸化/去磷酸化、甲基化/去甲基化、乙酰化/去乙酰化等多种共价修饰作用[20]。组蛋白修饰的异常调节,改变了基因表达的特性,为肿瘤的发生和发展提供了基础[21-22]。组蛋白去甲基化酶JMJD2B是新近研究发现的JMJD2家族中的一员,主要靶向组蛋白H3第9位赖氨酸的三甲基(H3K9me3)使其发生去甲基化,在干细胞分化、炎症和多种恶性肿瘤的发生发展中发挥重要的表观遗传学作用[2,23]。近期研究发现,JMJD2B主要定位于卵巢癌细胞株的细胞核内,这可能与其调控细胞内的信号通路基因的表达有关[15],但JMJD2B在促进卵巢癌发生、发展中的作用及分子机制则尚未完全阐明。近期研究发现,COX2的表达受到表观遗传学修饰的调控,如DNA甲基化、组蛋白的修饰等[12-13,24]。COX2的DNA甲基化水平与胃癌的发生发展及预后密切相关,尤其是COX2的高度甲基化预示着胃癌的不良预后[25]。有研究显示,JMJD2B通过不同调控机制参与多种肿瘤的发生和发展[1,4]。
本实验探讨JMJD2B是否通过调控COX2表达介导人卵巢癌细胞的恶性转化。研究结果显示,JMJD2B和COX2在人卵巢癌细胞SKOV3中表达均明显高于人正常卵巢上皮细胞IOSE80,JMJD2B和COX2在卵巢癌组织中的表达均显著升高并呈正相关;以RNA干扰技术靶向抑制人卵巢癌细胞JMJD2B表达后,COX2的转录表达明显下调。提示COX2信号通路在人卵巢癌细胞发生发展中的作用受组蛋白去甲基化酶JMJD2B调控。为进一步研究JMJD2B在促进人卵巢癌细胞恶性转化中的分子机制,本文应用克隆形成实验探讨JMJD2B表达对人卵巢癌细胞增殖的影响。结果显示,靶向抑制JMJD2B的表达,肿瘤细胞的增殖明显受到抑制,表明JMJD2B通过调控COX2表达促进细胞的增殖,进而介导卵巢癌细胞的恶性转化。但是,本研究存在着局限性,即仅采用细胞克隆形成实验来评价抑制JMJD2B对卵巢癌细胞增殖能力的影响。今后需要进一步对卵巢癌细胞侵袭、迁移能力和细胞分裂周期等进行研究,以探讨卵巢癌细胞恶性转化机制。此外,本文研究还显示,降低JMJD2B表达水平可抑制卵巢癌细胞克隆形成能力。
综上所述,抑制JMJD2B表达可能通过阻断COX2信号通路下调肿瘤相关基因表达,从而抑制人卵巢癌细胞的恶性转化。进一步分析组蛋白去甲基化酶JMJD2B、COX2信号通路和肿瘤相关基因表达间的相互作用,将有助于深入了解信号转导和组蛋白修饰在卵巢癌发生、发展中的相互作用,为进一步探讨JMJD2B在卵巢肿瘤中的作用机制提供理论基础。
[参考文献]
[1]KIM J H, JUNG D Y, NAGAPPAN A, et al. Histone H3K9 demethylase JMJD2B induces hepatic steatosis through upre-gulation of PPARγ2[J]. Scientific Reports, 2018,8(1):13734.
[2]DUAN L, PEREZ R E, LAI X, et al. The histone demethylase JMJD2B is critical for p53-mediated autophagy and survi-val in Nutlin-treated cancer cells[J]. The Journal of Biological Chemistry, 2019,294(23):9186-9197.
[3]ZHANG J J, REN J C, HAO S J, et al. MiRNA-491-5p inhibits cell proliferation, invasion and migration via targeting JMJD2B and serves as a potential biomarker in gastric cancer[J]. American Journal of Translational Research, 2018,10(2):525-534. [4]FU L N, WANG Y Q, TAN J, et al. Role of JMJD2B in colon cancer cell survival under glucose-deprived conditions and the underlying mechanisms[J]. Oncogene, 2018,37(3):389-402.
[5]ZENG H, CHEN Y L, YOU W T, et al. miR-491-5p functions as a tumor suppressor by targeting JMJD2B in ERα-positive breast cancer[J]. FEBS Letters, 2015,589(7):812-821.
[6]WU C H, CHUANG H Y, WANG C L, et al. Estradiol induces cell proliferation in MCF-7 mammospheres through HER2/COX-2[J]. Molecular Medicine Reports, 2019,19(3):2341-2349.
[7]BEHLING F, RIES V, SKARDELLY M, et al. COX2 expression is associated with proliferation and tumor extension in vestibular schwannoma but is not influenced by acetylsalicylic acid intake[J]. Acta Neuropathologica Communications, 2019,7(1):105.
[8]ZHANG W L, XIAO J, LU X M, et al. PVT1 (rs13281615) and miR-146a (rs2910164) polymorphisms affect the prognosis of colon cancer by regulating COX2 expression and cell apoptosis[J]. Journal of Cellular Physiology, 2019,234(10):17538-17548.
[9]XIAO J J, WANG F, LU H, et al. Targeting the COX2/MET/TOPK signaling axis induces apoptosis in gefitinib-resistant NSCLC cells[J]. Cell Death & Disease, 2019,10(10):777.
[10]JIN J, GUO T T, GUO Y D, et al. Methylation-associated silencing of miR-128 promotes the development of esophageal cancer by targeting COX-2 in areas with a high incidence of esophageal cancer[J]. International Journal of Oncology, 2019,54(2):644-654.
[11]CHUANG S, LU J H, LIN K L, et al. Epigenetic regulation of COX-2 expression by DNA hypomethylation via NF-κB activation in ketamine-induced ulcerative cystitis[J]. International Journal of Molecular Medicine, 2019. doi:10.3892/ijmm.2019.4252.
[12]LI A, CHEN P, LENG Y, et al. Histone deacetylase 6 regulates the immunosuppressive properties of cancer-associated fibroblasts in breast cancer through the STAT3-COX2-depen-dent pathway[J]. Oncogene, 2018,37(45):5952-5966.
[13]LAI C Y, HSIEH M C, HO Y C, et al. GluN2B/CaMKII mediates CFA-induced hyperalgesia via HDAC4-modified spinal COX2 transcription[J]. Neuropharmacology, 2018,135:536-546.
[14]PAN C L, ZHANG Y, MENG Q H, et al. Down regulation of the expression of ELMO3 by COX2 inhibitor suppresses tumor growth and metastasis in non-small-cell lung cancer[J]. Frontiers in Oncology, 2019,9:363.
[15]ZHOU F F, HUANG R, JIANG J, et al. Correlated non-nuclear COX2 and low HER2 expression confers a good prognosis in colorectal cancer[J]. Saudi Journal of Gastroenterology, 2018,24(5):301. [16]SCHEXNAYDER C, BROUSSARD K, ONUAGULUCHI D, et al. Metformin inhibits migration and invasion by suppressing ROS production and COX2 expression in MDA-MB-231 breast cancer cells[J]. International Journal of Molecular Sciences, 2018,19(11):3692.
[17]SANO Y, KOGASHIWA Y, ARAKI R, et al. Correlation of inflammatory markers, survival, and COX2 expression in oral cancer and implications for prognosis[J]. Otolaryngology-Head and Neck Surgery, 2018,158(4):667-676.
[18]RAHMAN M M, BRANE A C, TOLLEFSBOL T O. MicroRNAs and epigenetics strategies to reverse breast cancer[J]. Cells, 2019,8(10):1214.
[19]ELLIOTT H R, SHARP G C, RELTON C L, et al. Epigenetics and gestational diabetes: a review of epigenetic epide-miology studies and their use to explore epigenetic mediation and improve prediction[J]. Diabetologia, 2019,62(12):2171-2178.
[20]MUNJISHVILI V, BARABADZE E, MUZASHVILI T, et al. Epigenetic changes-histone 3 phosphorylation-epithelial ovarian tumors[J]. Georgian Medical News, 2019(294):128-131.
[21]SHOKRAII F, MOHARRAMI M, MOTAMED N, et al. Histone modification marks strongly regulate CDH1 promoter in prostospheres as A model of prostate cancer stem like cells[J]. Cell Journal, 2019,21(2):124-134.
[22]ORENAY-BOYACIOGLU S, KASAP E, GERCEKER E, et al. Expression profiles of histone modification genes in gastric cancer progression[J]. Molecular Biology Reports, 2018,45(6):2275-2282.
[23]FU L N, CHEN L S, YANG J, et al. HIF-1α-induced histone demethylase JMJD2B contributes to the malignant phenotype of colorectal cancer cells via an epigenetic mechanism[J]. Carcinogenesis, 2012,33(9):1664-1673.
[24]HU G K, GONG A Y, WANG Y, et al. LincRNA-COX2 promotes late inflammatory gene transcription in macrophages through modulating SWI/SNF-mediated chromatin remodeling[J]. Journal of Immunology, 2016,196(6):2799-2808.
[25]MELO C F V, GIGEK C O, SILVA J N, et al. Association of COX2 gene hypomethylation with intestinal type gastric cancer in samples of patients from northern Brazil[J]. Tumor Biology, 2014,35(2):1107-1111.
(本文編辑 黄建乡)
[关键词]卵巢肿瘤;组蛋白去甲基化酶;环氧化酶2;细胞增殖
[中图分类号]R73-354
[文献标志码]A
[文章编号]2096-5532(2021)02-0250-05
[ABSTRACT]Objective To investigate the effect of the histone demethylase JMJD2B on the proliferation of ovarian cancer cells and the related mechanism. Methods JMJD2B siRNA and control siRNA were transfected into normal human ovarian epithelial IOSE80 cells and ovarian cancer SKOV3 cells, and quantitative real-time PCR and Western blot were used to measure the mRNA and protein expression levels of JMJD2B and COX2 in these cells. Colony-forming assay was used to measure the proliferation of SKOV3 cells. Cancer tissue and normal adjacent tissue were collected from 20 patients with ovarian cancer, and quantitative real-time PCR was used to measure the mRNA expression levels of JMJD2B and COX2. Results Compared with IOSE80 cells, SKOV3 cells showed significant increases in the mRNA and protein expression levels of JMJD2B and COX2 (t=13.74-19.34,P<0.05). After SKOV3 cells were transfected with JMJD2B siRNA, there were significant reductions in the mRNA expression levels of JMJD2B and COX2 (t=4.97-7.56,P<0.05) and colony-forming ability, while the high expression of COX2 partially restored the colony-forming ability (F=58.23,P<0.05). The results of dual luciferase assay showed that the inhibition of JMJD2B expression significantly reduced the promoter activity of COX2 (t=35.48,P<0.01). The mRNA expression levels of JMJD2B and COX2 in human ovarian cancer tissue were significantly higher than those in adjacent tissue (t=85.42,85.11;P<0.05), with positive correlation between them (R2=0.983,95%CI=0.984 to 0.995,P<0.01). Conclusion The reduction of JMJD2B can inhibit the proliferation of human ovarian cancer cells by inhibiting the expression of COX2. [KEY WORDS]ovarian neoplasms; JMJD2B; cyclooxygenase 2; cell proliferation
JMJD2B是新近研究发现的一種组蛋白去甲基化酶,可调节染色质结构或基因表达[1]。多项研究发现,JMJD2B在多种肿瘤如乳癌、胃癌、结肠癌的发生发展过程中发挥重要作用[2-5]。前期研究发现,JMJID2B在卵巢癌组织中高表达,提示JMJD2B与卵巢癌的发生发展密切相关。然而,JMJD2B介导卵巢癌细胞恶性转化的相关分子机制研究甚少。环氧化酶2(COX2)是一种促进细胞增殖和侵袭转移及抑制细胞凋亡的炎性细胞因子[6-9]。已有研究结果发现,COX2的表达受表观遗传学修饰的调控,例如组蛋白修饰、DNA甲基化等[10-13]。还有研究发现,COX2的DNA甲基化与胃癌、非小细胞肺癌、膀胱异型细胞癌等恶性肿瘤的发生发展以及预后密切相关,特别是COX2的高度甲基化预示肿瘤的不良预后[10,14-17]。本研究观察抑制人卵巢癌细胞JMJD2B表达后COX2水平的变化,以及靶向抑制JMJD2B 表达对卵巢癌细胞增殖的影响,探讨JMJD2B促进卵巢癌细胞恶性转化的作用及其相关机制。现将结果报告如下。
1 材料与方法
1.1 实验材料
人卵巢癌细胞株SKOV3(购自济南市人民医院),人正常卵巢上皮细胞株IOSE80(购于中国上海慧颖生物科技有限公司);胎牛血清、DMEM和DMEM/F12培养基(Gibco公司,美国);JMJD2B siRNA和control siRNA(Invitrogen公司,美国),JMJD2B siRNA序列为5′-UCUCCAUCACCUG-CCUCAAGCACAA-3′,control siRNA为5′-CCU-ACAUCCCGAUCGAUGAUGUUGA-3′;转染试剂脂质体Lipofectamine 2000(Invitrogen公司,美国);反转录试剂盒(Thermo Scientific公司,美国),实时荧光定量PCR试剂盒(Takara公司,日本);BCA蛋白定量试剂盒(碧云天生物技术公司,中国);JMJD2B抗体(Bethyl Laboratories公司,美国),COX2抗体(Cayman chemical公司,美国),β-actin抗体(Santa Cruz Biotechnology公司,美国);辣根过氧化物酶标记的抗兔、抗鼠二抗(Jackson ImmunoResearch公司,美国);ECL化学发光检测试剂盒(Millipore公司,美国),COX2高表达质粒和COX2启动子质粒(上海浩然生物技术有限公司)。卵巢癌病人手术切除的癌组织及癌旁正常组织标本各20例(济南市人民医院)。
1.2 实验方法
1.2.1 细胞培养 SKOV3细胞和IOSE80细胞分别在含有体积分数0.10胎牛血清的DMEM培养基和DMEM/F12培养基中,于37 ℃、体积分数0.05 CO2 条件下传代培养。
1.2.2 转染 将对数生长期SKOV3细胞以每孔2×105个接种至6孔板中培养,待细胞达60%~80%融合时进行转染。参照转染试剂说明,分别将JMJD2B siRNA、control siRNA或COX2高表达质粒转染入细胞内,培养48 h后收集细胞。
1.2.3 RNA的提取、反转录及实时荧光定量PCR检测 应用RNA提取试剂盒提取细胞或者组织总RNA,逆转录生成cDNA,将所得cDNA保存于-20 ℃冰箱备用。以cDNA为模板,在TaqDNA聚合酶作用下行PCR扩增反应。所用引物及其序列见表1。PCR反应体系10 μL,内含2×SYBR Green Mixture 5.0 μL,2.5 μmol/L正反向引物各1.0 μL,cDNA 1.0 μL,加ddH2O补足体积至10.0 μL。PCR条件:95 ℃、15 s,60 ℃、30 s,74 ℃、30 s,在Bio-Rad CFX96荧光定量PCR仪上扩增40个循环后收集荧光数据。
1.2.4 蛋白印迹法检测 应用RIPA裂解细胞,在冰上静置30 min,以12 000 r/min离心10 min,取蛋白上清检测质量浓度后,取40 μg上样,在体积分数0.10的SDS-PAGE中电泳分离(电压50 V,时间250 min),电转至PVDF膜(电流250 mA,时间190 min),以50 g/L的脱脂奶粉室温封闭60 min,加一抗(JMJD2B,1∶1 000稀释;COX2,1∶100稀释;β-actin,1∶1 000稀释)4 ℃过夜孵育,PBST漂洗3次,每次5 min,再加入HRP标记的二抗室温孵育60 min,PBST漂洗3次,每次5 min,加入ECL化学发光工作液室温孵育2~3 min,暗室中曝光、显影、定影,扫描拍照后保存数据。
1.2.5 细胞克隆形成实验 SKOV3细胞接种至细胞板,将JMJD2B siRNA转染至细胞,24 h后行COX2启动子载体转染,同时转染pRL-TK作为内参。转染48 h后,弃去培养液,PBS洗涤3次,Passive Lysis Buffer裂解细胞。最后用荧光素酶报告基因分析仪检测荧光素酶的活力。
1.3 统计学方法
采用SPSS 17.0软件进行统计学分析,计量资料数据以x2±s表示,两组数据间比较采用t检验,多组比较采用ANOVA分析。以P<0.05表示差异有统计学意义。
2 结 果
2.1 IOSE80细胞和SKOV3细胞中JMJD2B和COX2表达比较
SKOV3细胞中JMJD2B、COX2的mRNA和蛋白表达均明显高于IOSE80细胞,差异有统计学意义(t=13.74~19.34,P<0.05)。见图1。 2.2 转染JMJD2B siRNA对COX2表达的影响
实时荧光定量PCR检测和蛋白印迹法的检测结果显示,SKOV3细胞转染JMJD2B siRNA后,JMJD2B和COX2的mRNA和蛋白表達均降低,差异有显著性(t=4.97~7.56,P<0.05)。见图2。
2.3 抑制JMJD2B的表达对COX2启动子表达的影响
双荧光素酶实验结果显示,抑制JMJD2B的表达可以明显降低COX2的表达,差异有显著性(t=35.48,P<0.01)。见图3。
2.4 JMJD2B和COX2表达对SKOV3细胞克隆形成能力的影响
细胞克隆形成实验结果显示,SKOV3细胞转染JMJD2B siRNA后细胞的克隆形成能力明显减弱,而高表达COX2可以部分恢复细胞的克隆形成能力(F=58.23,P<0.01)。见图4。
2.5 人卵巢癌组织及其癌旁组织中JMJD2B和COX2 mRNA表达关系
与癌旁组织相比,卵巢癌组织中JMJD2B和COX2的mRNA表达均显著升高(t=85.42,P<0.05),且两者表达水平呈正相关关系(R2=0.983,95%CI=0.984~0.995,P<0.01)。见图5。
3 讨 论
肿瘤的发生、发展是一个多因素参与、多步骤演进的复杂病理过程,涉及信号通路转导异常和基因表达调控异常,其中表观遗传学调控机制在肿瘤发生发展中的作用越来越受到关注。表观遗传学调控主要包括组蛋白修饰、DNA甲基化、染色体重塑和非编码RNAs等,其中组蛋白修饰是表观遗传学的重要调控机制[18-19]。组蛋白修饰主要有磷酸化/去磷酸化、甲基化/去甲基化、乙酰化/去乙酰化等多种共价修饰作用[20]。组蛋白修饰的异常调节,改变了基因表达的特性,为肿瘤的发生和发展提供了基础[21-22]。组蛋白去甲基化酶JMJD2B是新近研究发现的JMJD2家族中的一员,主要靶向组蛋白H3第9位赖氨酸的三甲基(H3K9me3)使其发生去甲基化,在干细胞分化、炎症和多种恶性肿瘤的发生发展中发挥重要的表观遗传学作用[2,23]。近期研究发现,JMJD2B主要定位于卵巢癌细胞株的细胞核内,这可能与其调控细胞内的信号通路基因的表达有关[15],但JMJD2B在促进卵巢癌发生、发展中的作用及分子机制则尚未完全阐明。近期研究发现,COX2的表达受到表观遗传学修饰的调控,如DNA甲基化、组蛋白的修饰等[12-13,24]。COX2的DNA甲基化水平与胃癌的发生发展及预后密切相关,尤其是COX2的高度甲基化预示着胃癌的不良预后[25]。有研究显示,JMJD2B通过不同调控机制参与多种肿瘤的发生和发展[1,4]。
本实验探讨JMJD2B是否通过调控COX2表达介导人卵巢癌细胞的恶性转化。研究结果显示,JMJD2B和COX2在人卵巢癌细胞SKOV3中表达均明显高于人正常卵巢上皮细胞IOSE80,JMJD2B和COX2在卵巢癌组织中的表达均显著升高并呈正相关;以RNA干扰技术靶向抑制人卵巢癌细胞JMJD2B表达后,COX2的转录表达明显下调。提示COX2信号通路在人卵巢癌细胞发生发展中的作用受组蛋白去甲基化酶JMJD2B调控。为进一步研究JMJD2B在促进人卵巢癌细胞恶性转化中的分子机制,本文应用克隆形成实验探讨JMJD2B表达对人卵巢癌细胞增殖的影响。结果显示,靶向抑制JMJD2B的表达,肿瘤细胞的增殖明显受到抑制,表明JMJD2B通过调控COX2表达促进细胞的增殖,进而介导卵巢癌细胞的恶性转化。但是,本研究存在着局限性,即仅采用细胞克隆形成实验来评价抑制JMJD2B对卵巢癌细胞增殖能力的影响。今后需要进一步对卵巢癌细胞侵袭、迁移能力和细胞分裂周期等进行研究,以探讨卵巢癌细胞恶性转化机制。此外,本文研究还显示,降低JMJD2B表达水平可抑制卵巢癌细胞克隆形成能力。
综上所述,抑制JMJD2B表达可能通过阻断COX2信号通路下调肿瘤相关基因表达,从而抑制人卵巢癌细胞的恶性转化。进一步分析组蛋白去甲基化酶JMJD2B、COX2信号通路和肿瘤相关基因表达间的相互作用,将有助于深入了解信号转导和组蛋白修饰在卵巢癌发生、发展中的相互作用,为进一步探讨JMJD2B在卵巢肿瘤中的作用机制提供理论基础。
[参考文献]
[1]KIM J H, JUNG D Y, NAGAPPAN A, et al. Histone H3K9 demethylase JMJD2B induces hepatic steatosis through upre-gulation of PPARγ2[J]. Scientific Reports, 2018,8(1):13734.
[2]DUAN L, PEREZ R E, LAI X, et al. The histone demethylase JMJD2B is critical for p53-mediated autophagy and survi-val in Nutlin-treated cancer cells[J]. The Journal of Biological Chemistry, 2019,294(23):9186-9197.
[3]ZHANG J J, REN J C, HAO S J, et al. MiRNA-491-5p inhibits cell proliferation, invasion and migration via targeting JMJD2B and serves as a potential biomarker in gastric cancer[J]. American Journal of Translational Research, 2018,10(2):525-534. [4]FU L N, WANG Y Q, TAN J, et al. Role of JMJD2B in colon cancer cell survival under glucose-deprived conditions and the underlying mechanisms[J]. Oncogene, 2018,37(3):389-402.
[5]ZENG H, CHEN Y L, YOU W T, et al. miR-491-5p functions as a tumor suppressor by targeting JMJD2B in ERα-positive breast cancer[J]. FEBS Letters, 2015,589(7):812-821.
[6]WU C H, CHUANG H Y, WANG C L, et al. Estradiol induces cell proliferation in MCF-7 mammospheres through HER2/COX-2[J]. Molecular Medicine Reports, 2019,19(3):2341-2349.
[7]BEHLING F, RIES V, SKARDELLY M, et al. COX2 expression is associated with proliferation and tumor extension in vestibular schwannoma but is not influenced by acetylsalicylic acid intake[J]. Acta Neuropathologica Communications, 2019,7(1):105.
[8]ZHANG W L, XIAO J, LU X M, et al. PVT1 (rs13281615) and miR-146a (rs2910164) polymorphisms affect the prognosis of colon cancer by regulating COX2 expression and cell apoptosis[J]. Journal of Cellular Physiology, 2019,234(10):17538-17548.
[9]XIAO J J, WANG F, LU H, et al. Targeting the COX2/MET/TOPK signaling axis induces apoptosis in gefitinib-resistant NSCLC cells[J]. Cell Death & Disease, 2019,10(10):777.
[10]JIN J, GUO T T, GUO Y D, et al. Methylation-associated silencing of miR-128 promotes the development of esophageal cancer by targeting COX-2 in areas with a high incidence of esophageal cancer[J]. International Journal of Oncology, 2019,54(2):644-654.
[11]CHUANG S, LU J H, LIN K L, et al. Epigenetic regulation of COX-2 expression by DNA hypomethylation via NF-κB activation in ketamine-induced ulcerative cystitis[J]. International Journal of Molecular Medicine, 2019. doi:10.3892/ijmm.2019.4252.
[12]LI A, CHEN P, LENG Y, et al. Histone deacetylase 6 regulates the immunosuppressive properties of cancer-associated fibroblasts in breast cancer through the STAT3-COX2-depen-dent pathway[J]. Oncogene, 2018,37(45):5952-5966.
[13]LAI C Y, HSIEH M C, HO Y C, et al. GluN2B/CaMKII mediates CFA-induced hyperalgesia via HDAC4-modified spinal COX2 transcription[J]. Neuropharmacology, 2018,135:536-546.
[14]PAN C L, ZHANG Y, MENG Q H, et al. Down regulation of the expression of ELMO3 by COX2 inhibitor suppresses tumor growth and metastasis in non-small-cell lung cancer[J]. Frontiers in Oncology, 2019,9:363.
[15]ZHOU F F, HUANG R, JIANG J, et al. Correlated non-nuclear COX2 and low HER2 expression confers a good prognosis in colorectal cancer[J]. Saudi Journal of Gastroenterology, 2018,24(5):301. [16]SCHEXNAYDER C, BROUSSARD K, ONUAGULUCHI D, et al. Metformin inhibits migration and invasion by suppressing ROS production and COX2 expression in MDA-MB-231 breast cancer cells[J]. International Journal of Molecular Sciences, 2018,19(11):3692.
[17]SANO Y, KOGASHIWA Y, ARAKI R, et al. Correlation of inflammatory markers, survival, and COX2 expression in oral cancer and implications for prognosis[J]. Otolaryngology-Head and Neck Surgery, 2018,158(4):667-676.
[18]RAHMAN M M, BRANE A C, TOLLEFSBOL T O. MicroRNAs and epigenetics strategies to reverse breast cancer[J]. Cells, 2019,8(10):1214.
[19]ELLIOTT H R, SHARP G C, RELTON C L, et al. Epigenetics and gestational diabetes: a review of epigenetic epide-miology studies and their use to explore epigenetic mediation and improve prediction[J]. Diabetologia, 2019,62(12):2171-2178.
[20]MUNJISHVILI V, BARABADZE E, MUZASHVILI T, et al. Epigenetic changes-histone 3 phosphorylation-epithelial ovarian tumors[J]. Georgian Medical News, 2019(294):128-131.
[21]SHOKRAII F, MOHARRAMI M, MOTAMED N, et al. Histone modification marks strongly regulate CDH1 promoter in prostospheres as A model of prostate cancer stem like cells[J]. Cell Journal, 2019,21(2):124-134.
[22]ORENAY-BOYACIOGLU S, KASAP E, GERCEKER E, et al. Expression profiles of histone modification genes in gastric cancer progression[J]. Molecular Biology Reports, 2018,45(6):2275-2282.
[23]FU L N, CHEN L S, YANG J, et al. HIF-1α-induced histone demethylase JMJD2B contributes to the malignant phenotype of colorectal cancer cells via an epigenetic mechanism[J]. Carcinogenesis, 2012,33(9):1664-1673.
[24]HU G K, GONG A Y, WANG Y, et al. LincRNA-COX2 promotes late inflammatory gene transcription in macrophages through modulating SWI/SNF-mediated chromatin remodeling[J]. Journal of Immunology, 2016,196(6):2799-2808.
[25]MELO C F V, GIGEK C O, SILVA J N, et al. Association of COX2 gene hypomethylation with intestinal type gastric cancer in samples of patients from northern Brazil[J]. Tumor Biology, 2014,35(2):1107-1111.
(本文編辑 黄建乡)