论文部分内容阅读
目前量子群智能优化算法的个体均采用基于量子比特测量的二进制编码方式,在用于连续问题优化时,由于频繁的解码运算,严重降低了优化效率.针对这一问题,本文提出一种混沌量子免疫算法.该方法直接采用量子比特的相位对抗体进行编码;用量子旋转门实现优良抗体的克隆扩增,通过在量子旋转门中引入混沌变量动态改变转角大小实现局部搜索;用基于Pauli-Z门的较差抗体的变异,实现全局优化.证明了算法的收敛性.由于优化过程统一在空间[0,2π]n进行,而与具体问题无关,因此,对不同尺度空间的优化问题具有良好的适应性.实验结果