论文部分内容阅读
利用独立分量分析(ICA)的不完整自然梯度算法对因混合而引起的多幅模糊灰度图像进行盲分离,并针对算法中的非线性函数与源信号概率分布密切相关,而源信号的分布却是未知的先验信息的问题,利用算法输出信号的峰度对非线性激活函数进行自适应选择,提出了一种改进的自适应不完整自然梯度算法,并将其应用于模糊图像的盲分离,分析了不同混合矩阵对本文算法恢复原始灰度图像的影响及算法性能。仿真结果证明了本文算法与经典的FastICA算法相比,计算耗时更少、性能指标明显优越。