论文部分内容阅读
目前多数人脸表情识别的研究仅限于6种基本表情,未考虑到人脸表情变化是细微的。因此提出了基于混合特征和分类树的细微表情识别方法。对眼睛区域采用Gabor小波变换提取纹理变化特征,对鼻子区域采用2D-DCT提取纹理变化特征,而对嘴巴区域采用改进的AAM提取形状变化特征。分类识别时,将易混淆表情先归为一类进行表情的粗分类,然后对类内的表情选择相应表情贡献较大的特征子区域中的特征,进行表情细分类。在每级分类识别过程中,对每个区域采用离散HMM得出表情概率,最后采用在训练阶段得到的贡献权值进行加权融合得到分类