论文部分内容阅读
A density functional theory is applied to calculating the local density profiles of colloids confined in a slit-like pore as well as the radial distribution functions of bulk colloids. The interaction between the colloidal particles is described using a hard-core Yukawa model. The excess Helmholtz energy functional is a combination of the modified fundamental measure theory of Yu and Wu (2002) for the hard-core contribution and a corrected mean-field theory for the attractive contribution. Comparison with the results from the Monte Carlo simulations shows that the corrected theory improves the density profiles of colloids in the vicinity of contact over the original mean-field theory. Both the present corrected theory and simulations suggest that there are depletion and desorption for the colloid with strong attraction between particles at low temperature.
A density functional theory is applied to calculating the local density profiles of colloids confined in a slit-like pore as well as the radial distribution functions of bulk colloids. The interaction between the colloidal particles is described using a hard-core Yukawa model. The excess Helmholtz energy functional is a combination of the modified fundamental measure theory of Yu and Wu (2002) for the hard-core contribution and a corrected mean-field theory for the attractive contribution. Comparison with the results from the Monte Carlo simulations shows that the corrected theory improves the density profiles of colloids in the vicinity of contact over the original mean-field theory. Both the present corrected theory and simulations suggest that there are depletion and desorption for the colloid with strong attraction between particles at low temperature.