论文部分内容阅读
Experiments were conducted on syngas preparation from dry reforming of methane by carbon dioxide with a DC arc plasma at atmospheric pressure.In all experiments,nitrogen gas was used as the working gas for thermal plasma to generate a high-temperature jet into a horizontal tube reactor.A mixture of methane and carbon dioxide was fed vertically into the jet.In order to obtain a higher conversion rate of methane and carbon dioxide,chemical energy efficiency and fuel production efficiency,parametric screening studies were conducted,in which the volume ratio of carbon dioxide to methane in fed gases and the total flux of fed gases were taken into account.Results showed that carbon dioxide reforming of methane to syngas by thermal plasma exhibited a larger processing capacity,higher conversion of methane and carbon dioxide and higher chemical energy efficiency and fuel production efficiency.In addition,thermodynamic simulation for the reforming process was conducted.Experimental data agreed well with the thermodynamic results,indicating that high thermal efficiency can be achieved with the thermal plasma reforming process.
Experiments were conducted on syngas preparation from dry reforming of methane by carbon dioxide with a DC arc plasma at atmospheric pressure. All experiments, nitrogen gas was used as the working gas for thermal plasma to generate a high-temperature jet into a horizontal tube reactor . A mixture of methane and carbon dioxide was fed vertically into the jet. Order to obtain a higher conversion rate of methane and carbon dioxide, chemical energy efficiency and fuel production efficiency, parametric screening studies were conducted, in which the volume ratio of carbon dioxide to methane in fed gases and the total flux of fed gases were taken into account. Results showed that carbon dioxide reforming of methane to syngas by thermal plasma showed a larger processing capacity, higher conversion of methane and carbon dioxide and higher chemical energy efficiency and fuel production efficiency. In addition, thermodynamic simulation for the reforming process was conducted. Experimental data agreed well with the thermodynamic results, indicating that high thermal efficiency can be achieved with the thermal plasma reforming process.