论文部分内容阅读
针对电机震动信号的频谱特点,提出基于小波-神经网络技术的电机故障模式识别与诊断的新方法.利用小波包可进行多维多分辨率的特性,对电机振动信号进行分解与重构,获得震动信号的突变信息,实现电机状态的特征提取.对提取出的特征,用ART2神经网络进行状态分类,进而诊断故障类型,并利用这种方法进行仿真试验,通过对仿真结果的分析证实这种诊断的可行性.