论文部分内容阅读
以国产GF-2卫星影像对北京市鹫峰国家森林公园主要植被类型进行面向对象分类,通过光谱、纹理、植被指数、季相特征属性的筛选并建立规则集,采用3种分类方法(四季时相知识规则结合CART决策树、四季时相的最邻近法、单季时相的最邻近法)进行植被类型分类。结果显示:3种分类方法的总体分类精度分别为85.6%、79.0%、60.1%。充分证明了在植被类型较复杂的区域内,利用GF-2影像多季时相特征,采用分层逐步分类法与多种分类方法相结合能够提高植被类型的分类精度,为国产高分遥感影像在森林资源监测与管理上的应用提供了技术支持。