论文部分内容阅读
针对粒子滤波算法因计算量过大带来的实时性问题,文中提出一种基于K-means聚类的粒子滤波目标跟踪算法。该算法利用K-means算法对重采样后的粒子进行聚类以达到进一步寻优的目的,这样可以得到更为有效的粒子集,从而大大减小计算的复杂度。通过与基于传统粒子滤波算法的实验数据的分析表明提出的算法可以有效地减小计算量,改善粒子滤波算法的实时性问题。同时,相比于传统粒子滤波目标跟踪算法,改进算法的鲁棒性也有所提高。