论文部分内容阅读
摘 要 ADSS光缆属于电力特种光缆,全称为“全介质自承式光缆”,所谓“全介质”是指ADSS光缆中不含导体,全部为电介质。ADSS光缆具有自承能力,采用具有高弹性模量的高强度芳纶纱作为抗张元件。ADSS光缆工作在大跨距两点支撑的架空状态,能够与电力架空线路的规程相适应,在电力系统中应用非常广泛。由于ADSS光缆易受电腐蚀损伤,所以一般应用在220kV及以下的电力线路上,超过220kV一般考虑使用OPGW光缆。本文则在此基础上对ADSS光缆架设施工过程中相关热点问题作出一番探讨。
关键词 ADSS光缆 架设 施工
1、ADSS光缆的适用范围
对于新建或已建成的220kV及以上的高压输电线路,且作为通讯干线走廊的,为保证通讯线路与输电线路运行寿命(30年以上)的匹配性,从光纤通信的可靠性、施工和维护等方面考虑,工程人员应选择OPGW,220kV及以上的干线输电线路不宜选用ADSS光缆。对于已建成的220kV及以下的输电线路,特别是区域变电所间的通信,可以考虑选用ADSS光缆。工程人员首先应考虑现有电力线路上架设ADSS光缆的可靠性,对电力线路已运行时间、杆塔的老化程度、原设计标准等条件来进行评估,从而确定架设的可行性。在产品方面,国内目前有ADSS光缆的产品和检验标准,如国家标准GB/T18899《全介质自承式光缆》和电力行业标准DL/T788《全介质自承式光缆》,国际上主要有IEEE-P1222《用于架空输电线路的全介质自承式光缆IEEE标准(草案)》和IEC60794-4《光缆第4部分:分规范-沿电力线架设的光缆》。在工程方面,国内有电力行业标准DL/T5344《电力光纤通信工程验收规范》和DL/T767《全介质自承式光缆(ADSS)用预绞丝金具技术条件和试验方法》,但至今没有成熟有效的针对ADSS光缆的线路工程设计规定/规程和规范,所以ADSS光缆安装设计,只能参照现行的电力行业标准DL/T5092《110-500kV架空送电线路设计技术规程》。
2、ADSS光缆选择
2.1ADSS光缆结构。
ADSS光缆的结构分为中心束管和层绞束管两大类,除了一些各方面条件较好的电力线路,一般情况下宜选用层绞束管结构的ADSS光缆。ADSS光缆中的光纤是以波状导入束管内,然后束管进行绞合,产生绞合余长,光纤具有适当的余长,保证了光缆承受正常工作的机械负荷时光纤不受力(即光纤零张力设计),也不会增加光纤的损耗。
2.2ADSS电气性能。
ADSS光缆的类型选择首先要考虑电气性能要求,即ADSS所能承受的空间感应电场(电位)的大小,原因是ADSS光缆工作在高压线路导线附近,导线周围空间存在电磁场,光缆对导线和地之间的电容耦合使光缆处于一个空间电位的位置,因雾、露或下小雨時,潮湿的污秽在光缆外护套表面形成一个电阻层。在空间电位的作用下,护套表面对铁塔上的光缆接地金具之间流有电流,电流发热造成水分蒸发,使光缆外护套表面形成小段的干燥地带,阻断了电流,当干燥带的电位差达到一定高度时,便发生放电形成电弧,这就是干带电弧。它产生的热可以使交联聚合物逐步失去结合力而形成腐蚀,护套会熔成洞。这种现象或故障称为护套电腐蚀或电痕,严重时会导致断缆。ADSS采用何种类型的外护套取决于光缆安装位置的空间电位的大小,与电力线路的电压等级、杆塔结构、导线布置及相位排列等多因素相关。
2.3ADSS机械性能。
2.3.1力学特性。ADSS光缆的机械强度方面,纺纶承载、缆内纺纶的数量决定了光缆的额定抗拉强度(RTS),单位为kN。ADSS光缆最大允许张(应)力(MAT)对应于在最恶劣的设计气象条件下光缆所受到的最大张(应)力,单位为kN或N/mm2。ADSS光缆的年(日)平均张(应)力(EDS)对应于在无风、无冰及年平均气温下的张(应)力,单位为kN或N/mm2。ADSS光缆的极限运行张(应)力(UOS)可视作缆的过载能力,对应于在短时超过设计气象荷载时缆所承受的张(应)力,单位为kN或N/mm2。这四个力值之间存在一定的关系且与光缆结构有关,相关标准做出了规定。它们之间的关系又被称为“光纤应变窗”或缆的“应力应变”性能。
2.3.2张力-弧垂特性。与该特性有关的光缆的机械性能主要包括缆径、缆重、弹性模量和热膨胀系数等。ADSS光缆具有可变跨距特性,对于同一条光缆,如果气象条件和弧垂不同,它的允许使用档距是不同的。根据要架设光缆的电力线路设计气象条件、档距、跨越情况,杆塔的设计运行状况,线路转角、高差等情况,工程人员来确定ADSS光缆的机械性能。通常以电力线路的设计气象条件计算的ADSS光缆张力弧垂表为依据。校核杆塔的强度,增加的负荷主要有风荷载、复冰荷载及不平衡张力;还应校核交叉跨越,根据校核情况,最终确定ADSS光缆本身的机械性能。
3、控制条件的确定
控制条件(ADSS光缆的电气性能或机械性能)确定是ADSS安装设计中的一个重要环节,关系到线路的安全运行和光缆的使用寿命。它不但与电力线路的运行状况、气象条件有关,还与ADSS本身的机械性能有关,影响到ADSS类型、ADSS的悬挂位置确定(电气性能)、交叉跨越和杆塔负荷所要求的ADSS的张力和弧垂的选取(机械性能)。
3.1杆塔条件和空间电位分布。杆塔条件主要包括:杆塔型号和尺寸、系统电压、导线型号或外径、导线回路、导线分裂数及分裂间距、地线型号或外径、相位排列(双回或同塔多回很重要)。
3.2光缆最大允许弧垂的确定。除了机械强度,ADSS光缆的最大允许弧垂取决于光缆弧垂最低点与地面(或交越物)的最小间距与悬挂点位置(或高度),悬挂点位置设计与该点的空间电位直接相关。根据相关规程或工程对光缆弧垂最低点与地面的最小间距的要求,可以求得光缆的最大允许弧垂。工程人员应该明确:这是工程重要的控制条件之一。
3.3光缆的张力—弧垂—跨距特性。计算张力-弧垂-跨距特性需要有设计气象组合条件和光缆的初始安装弧垂两个前提。根据某一规格的缆当初始安装弧垂为1%时在两个气象条件下的计算实例。可有如下结果。①单从年平均均应力受限(即EDS控制)来考虑,该缆的最大跨距小于500m,因它在500m时的应力为540.2kN/mm2,超过了光缆本身的指标512.5kN/mm2。②同理,单从MAT控制来考虑:气象条件A(覆冰15mm)时最大使用跨距小于450m;气象条件B(覆冰10mm)时最大使用跨距可达550m。③若同时以最大允许弧垂分别为12m或16m控制,则在气象条件A下分别小于350m或小于450m;在气象条件B下分别小于450m或600m。这样,就引出了一个ADSS光缆的”实际使用档距”的概念。用相同的计算方法,改变初始安装弧垂可以得出实际使用档距表。ADSS光缆的安装设计要考虑多个因素。ADSS的弧垂及张力取决于线路的重要交叉跨越和杆塔结构的强度,两者互相制约。当跨越或杆塔结构要求ADSS挂点时,电场强度的分布就可能对ADSS光缆不利,根据电场分布确定的挂点位置,可能又不利于杆塔的强度和跨越及线间距离要求的确定。
3.4ADSS最大使用张力。ADSS的最大使用张力要根据原电力线路杆塔的设计荷载来确定,在杆塔负荷允许的条件下,提高张力有利于交叉跨越的实现,但可能使缆的有效使用跨距减小(控制条件转变为缆的EDS受限)。工程人员应依据不同耐张段内各档距的跨越情况,确定各耐张段内的最大使用张力。当ADSS根据杆塔结构或跨越等因素要求必须挂在某个位置时,如110kV线路选在空间感应电场为20kV的地方时,ADSS光缆就不能按惯例选择PE护套。这种情况要根据线路中各耐张段内跨越,杆塔情况确定。必要时,工程人员通过经济比较,在一条线路上以耐张段为单位,选用不同张力和护套类型的ADSS光缆。总之,在实际工程设计中,工程人员要结合已建电力线路的实际情况,当上述条件同时出现时,就要正确选定控制条件,使ADSS光缆的安装设计经济、安全、合理。
4、ADSS的防振和金具
ADSS光缆的强度设计安全系数,应在与所架设的电力线路设计气象条件相一致的条件下确定,根据我国送电线路成熟的运行经验,ADSS光缆的设计安全系数不应小于2.5。ADSS光缆与金属绞线一样,受风等环境影响,会发生振动,长期的振动会导致光缆本身和金具的疲劳损坏。因此,ADSS光缆的年平均运行张力应按不大于ADSS光缆极限拉断力的20%选取,并采取相应的防振措施。
4.1防振措施。目前,防振措施有两种:加装防振锤和螺旋式防振鞭(SVD)。如采用加装防振锤措施,应在安装处缠绕一定长度的预绞丝护线条分散应力。SVD施工方便,因此得到广泛使用,现场和实验室试验表明防振鞭对降低振动水平非常有效。SVD应根据设计要求安装,2根及以上的SVD并联或串联均可,通常用并联,一般最大时可并联4根。业界通常认为,SVD的安装位置对防振效果不敏感,为了避免防振鞭与金具預绞丝末端过近产生电弧,振鞭距金具预绞丝末端的距离越大越安全。
4.2ADSS光缆金具。ADSS光缆金具主要有耐张金具、悬垂金具和接头盒,通常由ADSS光缆厂家配套供货。近年来,国产配套金具已得到了广泛使用,运行情况良好。
5、ADSS光缆工程施工
一项ADSS光缆工程要能够保质保量、安全顺利地完成,高素质的施工队伍、严格的管理和规范的施工是相当重要的。
5.1施工前准备
施工准备包括施工图交底、机具准备、线路复测、光缆测试、配盘及运输、人员培训、措施制订等。技术交底:施工前,要求厂方督导讲解所架设光缆的技术性能及施工注意事项,使所有参加施工人员掌握光缆的主要特性参数如最小弯曲半径、最大侧压力、最大张力等,做好技术交底。机具准备:施工前,要对施工器具、材料型号、数量以及合格证等进行全面的检查,应与合同要求相符,且必须符合ADSS光缆工程施工要求。
人员培训:对施工人员特别是登塔作业人员进行培训,带电架设时,必须严格遵守《电业安全工作规程》,确保人身安全。光缆及器材检验:在施工前期,要提前选择好每一个放缆场,确保场点位置选择符合施工器械操作安全,并满足光缆布放点对距离的要求。检查缆盘及外层光缆,确定光缆未受损伤;检查光缆总数量,盘长是否与要求一致。用光时域反射仪(OTDR)检查光缆在运输中是否受到损害,并记录所得数据。提前做好熔接机、切割刀、剥线钳等仪器、工具和相关配件的检查和准备。
5.2光缆架设、附件安装及光缆熔接
ADSS光缆施工与架空电力线施工基本相同,但光缆有其特殊的技术要求,要尽可能采用标准安装方法,使用安装机械和张力放线技术。先用人工放好牵引绳,对沿线跨越公路、桥梁、河流、树林、农田、建筑物等注意采取保护措施,特殊跨越要搭好支撑架并派专人看守,对于跨越10kV及以上的电力线需到供电部门办理停电手续,现场还需做好验电和接地工作。杆塔上的传动滑轮要安装牢固并可靠接地,首尾塔上要采用大滑轮,一般直径大于600mm;张力机和牵引机与杆塔直线距离应是滑轮对地高度的4倍,滑轮采用硬塑胶或尼纶材料制成,凹槽要有足够深度,在其内侧也可缠上软橡胶带,以减小光缆受到的侧压力并保护光缆外护套。光缆头可用网套式连接器缠紧,中间通过退扭器与牵引绳连接,利用牵引机开始对牵引绳收线,并使张力机同步工作,张力保持在8~15kN,速度控制在20m/min左右,其间注意使光缆与地面或其它障碍物保持一定距离,均匀受力、匀速前进;牵引机、张力机要有专人操作,中间各杆塔及重要跨越点派专人监护,以防光缆与地面摩擦或被其它障碍物钩挂。整盘光缆放完后,可先在张力机端侧杆塔先做好耐张,然后在下一个耐张塔上做耐张,并按设计调整好张力和弧垂,同时满足光缆净空高度的要求。全线耐张做好后,直线杆塔采用悬垂金具线夹固定,并在档距两端安装防震鞭,档距大于500m安装两个,档距小于500m安装一个;终端塔一般各留比耐张点到地面的距离多10~15m余缆,以备熔接时操作方便。单盘光缆最好一天放完,否则,应做耐张挂高光缆,两侧余缆派人看守过夜,防止人为危害。全段光缆施工完毕,应清理现场和各跨越点,仔细清点施工人数无误后,方可到供电部门办理各跨越线路恢复送电手续。在施工放线时,光缆不能打扣、扭曲或挤压,时刻注意不能小于其最小弯曲半径:动态时为光缆外径的20倍加5cm,静态时为光缆外径的10倍。临时定位杆和金具的应用决定于光缆预期负荷张力的大小。在调节光缆弧垂时,应安装临时向下吊索,以防止结构失衡,这时临时定位杆距杆塔距离应不小于2倍杆塔高度。安装光缆前,所有临时性的吊索都要拉紧。光缆熔接应在每盘缆放完后当天内完成,否则,应盘好余缆固定至耐张塔上。光缆接续前,应将光缆在施工中可能受损的头部剪去2~3m,熔接完毕后还需用OTDR精确测量接头损耗等参数,确保每个熔接点衰减小于0.05dB,然后做热缩管加强保护并按光纤色谱顺序做好熔接记录。光纤的盘纤、接头盒封装也是一项细心的工作,先固定好热缩管,再将两侧余纤按槽道盘好,加上海棉衬垫,用胶带轻轻粘紧,操作过程中应防止挤压和弯曲半径过小现象,以免带来附加损耗。密封接续盒时要仔细检查每一处缝隙,以防日后水气进入。然后将尾缆盘好与接续盒一并固定到铁塔构件上,一般放在铁塔第一个横担上,距离地面6m左右。光缆下塔段,每间距1.5m左右处用引下线夹固定,距地面4m段用合适钢管套住,以防人为破坏;光缆接线盒应安放在塔上或埋在地下。注意做好施工期间的施工记录,以备工程验收和维护时查阅。
ADSS光缆线路工程涉及机械、电气、气象条件等诸多方面,是一项复杂的系统工程,因此必须要有科学的设计理念、严谨的施工方案才能建成高质量的电力信息化通道。
参考文献:
[1]张燕 ADSS 光缆设计与施工[J] 通信工程 2009 07
[2]刘强ADSS 光缆设计施工之我见[J] 通信工程 2010 07
关键词 ADSS光缆 架设 施工
1、ADSS光缆的适用范围
对于新建或已建成的220kV及以上的高压输电线路,且作为通讯干线走廊的,为保证通讯线路与输电线路运行寿命(30年以上)的匹配性,从光纤通信的可靠性、施工和维护等方面考虑,工程人员应选择OPGW,220kV及以上的干线输电线路不宜选用ADSS光缆。对于已建成的220kV及以下的输电线路,特别是区域变电所间的通信,可以考虑选用ADSS光缆。工程人员首先应考虑现有电力线路上架设ADSS光缆的可靠性,对电力线路已运行时间、杆塔的老化程度、原设计标准等条件来进行评估,从而确定架设的可行性。在产品方面,国内目前有ADSS光缆的产品和检验标准,如国家标准GB/T18899《全介质自承式光缆》和电力行业标准DL/T788《全介质自承式光缆》,国际上主要有IEEE-P1222《用于架空输电线路的全介质自承式光缆IEEE标准(草案)》和IEC60794-4《光缆第4部分:分规范-沿电力线架设的光缆》。在工程方面,国内有电力行业标准DL/T5344《电力光纤通信工程验收规范》和DL/T767《全介质自承式光缆(ADSS)用预绞丝金具技术条件和试验方法》,但至今没有成熟有效的针对ADSS光缆的线路工程设计规定/规程和规范,所以ADSS光缆安装设计,只能参照现行的电力行业标准DL/T5092《110-500kV架空送电线路设计技术规程》。
2、ADSS光缆选择
2.1ADSS光缆结构。
ADSS光缆的结构分为中心束管和层绞束管两大类,除了一些各方面条件较好的电力线路,一般情况下宜选用层绞束管结构的ADSS光缆。ADSS光缆中的光纤是以波状导入束管内,然后束管进行绞合,产生绞合余长,光纤具有适当的余长,保证了光缆承受正常工作的机械负荷时光纤不受力(即光纤零张力设计),也不会增加光纤的损耗。
2.2ADSS电气性能。
ADSS光缆的类型选择首先要考虑电气性能要求,即ADSS所能承受的空间感应电场(电位)的大小,原因是ADSS光缆工作在高压线路导线附近,导线周围空间存在电磁场,光缆对导线和地之间的电容耦合使光缆处于一个空间电位的位置,因雾、露或下小雨時,潮湿的污秽在光缆外护套表面形成一个电阻层。在空间电位的作用下,护套表面对铁塔上的光缆接地金具之间流有电流,电流发热造成水分蒸发,使光缆外护套表面形成小段的干燥地带,阻断了电流,当干燥带的电位差达到一定高度时,便发生放电形成电弧,这就是干带电弧。它产生的热可以使交联聚合物逐步失去结合力而形成腐蚀,护套会熔成洞。这种现象或故障称为护套电腐蚀或电痕,严重时会导致断缆。ADSS采用何种类型的外护套取决于光缆安装位置的空间电位的大小,与电力线路的电压等级、杆塔结构、导线布置及相位排列等多因素相关。
2.3ADSS机械性能。
2.3.1力学特性。ADSS光缆的机械强度方面,纺纶承载、缆内纺纶的数量决定了光缆的额定抗拉强度(RTS),单位为kN。ADSS光缆最大允许张(应)力(MAT)对应于在最恶劣的设计气象条件下光缆所受到的最大张(应)力,单位为kN或N/mm2。ADSS光缆的年(日)平均张(应)力(EDS)对应于在无风、无冰及年平均气温下的张(应)力,单位为kN或N/mm2。ADSS光缆的极限运行张(应)力(UOS)可视作缆的过载能力,对应于在短时超过设计气象荷载时缆所承受的张(应)力,单位为kN或N/mm2。这四个力值之间存在一定的关系且与光缆结构有关,相关标准做出了规定。它们之间的关系又被称为“光纤应变窗”或缆的“应力应变”性能。
2.3.2张力-弧垂特性。与该特性有关的光缆的机械性能主要包括缆径、缆重、弹性模量和热膨胀系数等。ADSS光缆具有可变跨距特性,对于同一条光缆,如果气象条件和弧垂不同,它的允许使用档距是不同的。根据要架设光缆的电力线路设计气象条件、档距、跨越情况,杆塔的设计运行状况,线路转角、高差等情况,工程人员来确定ADSS光缆的机械性能。通常以电力线路的设计气象条件计算的ADSS光缆张力弧垂表为依据。校核杆塔的强度,增加的负荷主要有风荷载、复冰荷载及不平衡张力;还应校核交叉跨越,根据校核情况,最终确定ADSS光缆本身的机械性能。
3、控制条件的确定
控制条件(ADSS光缆的电气性能或机械性能)确定是ADSS安装设计中的一个重要环节,关系到线路的安全运行和光缆的使用寿命。它不但与电力线路的运行状况、气象条件有关,还与ADSS本身的机械性能有关,影响到ADSS类型、ADSS的悬挂位置确定(电气性能)、交叉跨越和杆塔负荷所要求的ADSS的张力和弧垂的选取(机械性能)。
3.1杆塔条件和空间电位分布。杆塔条件主要包括:杆塔型号和尺寸、系统电压、导线型号或外径、导线回路、导线分裂数及分裂间距、地线型号或外径、相位排列(双回或同塔多回很重要)。
3.2光缆最大允许弧垂的确定。除了机械强度,ADSS光缆的最大允许弧垂取决于光缆弧垂最低点与地面(或交越物)的最小间距与悬挂点位置(或高度),悬挂点位置设计与该点的空间电位直接相关。根据相关规程或工程对光缆弧垂最低点与地面的最小间距的要求,可以求得光缆的最大允许弧垂。工程人员应该明确:这是工程重要的控制条件之一。
3.3光缆的张力—弧垂—跨距特性。计算张力-弧垂-跨距特性需要有设计气象组合条件和光缆的初始安装弧垂两个前提。根据某一规格的缆当初始安装弧垂为1%时在两个气象条件下的计算实例。可有如下结果。①单从年平均均应力受限(即EDS控制)来考虑,该缆的最大跨距小于500m,因它在500m时的应力为540.2kN/mm2,超过了光缆本身的指标512.5kN/mm2。②同理,单从MAT控制来考虑:气象条件A(覆冰15mm)时最大使用跨距小于450m;气象条件B(覆冰10mm)时最大使用跨距可达550m。③若同时以最大允许弧垂分别为12m或16m控制,则在气象条件A下分别小于350m或小于450m;在气象条件B下分别小于450m或600m。这样,就引出了一个ADSS光缆的”实际使用档距”的概念。用相同的计算方法,改变初始安装弧垂可以得出实际使用档距表。ADSS光缆的安装设计要考虑多个因素。ADSS的弧垂及张力取决于线路的重要交叉跨越和杆塔结构的强度,两者互相制约。当跨越或杆塔结构要求ADSS挂点时,电场强度的分布就可能对ADSS光缆不利,根据电场分布确定的挂点位置,可能又不利于杆塔的强度和跨越及线间距离要求的确定。
3.4ADSS最大使用张力。ADSS的最大使用张力要根据原电力线路杆塔的设计荷载来确定,在杆塔负荷允许的条件下,提高张力有利于交叉跨越的实现,但可能使缆的有效使用跨距减小(控制条件转变为缆的EDS受限)。工程人员应依据不同耐张段内各档距的跨越情况,确定各耐张段内的最大使用张力。当ADSS根据杆塔结构或跨越等因素要求必须挂在某个位置时,如110kV线路选在空间感应电场为20kV的地方时,ADSS光缆就不能按惯例选择PE护套。这种情况要根据线路中各耐张段内跨越,杆塔情况确定。必要时,工程人员通过经济比较,在一条线路上以耐张段为单位,选用不同张力和护套类型的ADSS光缆。总之,在实际工程设计中,工程人员要结合已建电力线路的实际情况,当上述条件同时出现时,就要正确选定控制条件,使ADSS光缆的安装设计经济、安全、合理。
4、ADSS的防振和金具
ADSS光缆的强度设计安全系数,应在与所架设的电力线路设计气象条件相一致的条件下确定,根据我国送电线路成熟的运行经验,ADSS光缆的设计安全系数不应小于2.5。ADSS光缆与金属绞线一样,受风等环境影响,会发生振动,长期的振动会导致光缆本身和金具的疲劳损坏。因此,ADSS光缆的年平均运行张力应按不大于ADSS光缆极限拉断力的20%选取,并采取相应的防振措施。
4.1防振措施。目前,防振措施有两种:加装防振锤和螺旋式防振鞭(SVD)。如采用加装防振锤措施,应在安装处缠绕一定长度的预绞丝护线条分散应力。SVD施工方便,因此得到广泛使用,现场和实验室试验表明防振鞭对降低振动水平非常有效。SVD应根据设计要求安装,2根及以上的SVD并联或串联均可,通常用并联,一般最大时可并联4根。业界通常认为,SVD的安装位置对防振效果不敏感,为了避免防振鞭与金具預绞丝末端过近产生电弧,振鞭距金具预绞丝末端的距离越大越安全。
4.2ADSS光缆金具。ADSS光缆金具主要有耐张金具、悬垂金具和接头盒,通常由ADSS光缆厂家配套供货。近年来,国产配套金具已得到了广泛使用,运行情况良好。
5、ADSS光缆工程施工
一项ADSS光缆工程要能够保质保量、安全顺利地完成,高素质的施工队伍、严格的管理和规范的施工是相当重要的。
5.1施工前准备
施工准备包括施工图交底、机具准备、线路复测、光缆测试、配盘及运输、人员培训、措施制订等。技术交底:施工前,要求厂方督导讲解所架设光缆的技术性能及施工注意事项,使所有参加施工人员掌握光缆的主要特性参数如最小弯曲半径、最大侧压力、最大张力等,做好技术交底。机具准备:施工前,要对施工器具、材料型号、数量以及合格证等进行全面的检查,应与合同要求相符,且必须符合ADSS光缆工程施工要求。
人员培训:对施工人员特别是登塔作业人员进行培训,带电架设时,必须严格遵守《电业安全工作规程》,确保人身安全。光缆及器材检验:在施工前期,要提前选择好每一个放缆场,确保场点位置选择符合施工器械操作安全,并满足光缆布放点对距离的要求。检查缆盘及外层光缆,确定光缆未受损伤;检查光缆总数量,盘长是否与要求一致。用光时域反射仪(OTDR)检查光缆在运输中是否受到损害,并记录所得数据。提前做好熔接机、切割刀、剥线钳等仪器、工具和相关配件的检查和准备。
5.2光缆架设、附件安装及光缆熔接
ADSS光缆施工与架空电力线施工基本相同,但光缆有其特殊的技术要求,要尽可能采用标准安装方法,使用安装机械和张力放线技术。先用人工放好牵引绳,对沿线跨越公路、桥梁、河流、树林、农田、建筑物等注意采取保护措施,特殊跨越要搭好支撑架并派专人看守,对于跨越10kV及以上的电力线需到供电部门办理停电手续,现场还需做好验电和接地工作。杆塔上的传动滑轮要安装牢固并可靠接地,首尾塔上要采用大滑轮,一般直径大于600mm;张力机和牵引机与杆塔直线距离应是滑轮对地高度的4倍,滑轮采用硬塑胶或尼纶材料制成,凹槽要有足够深度,在其内侧也可缠上软橡胶带,以减小光缆受到的侧压力并保护光缆外护套。光缆头可用网套式连接器缠紧,中间通过退扭器与牵引绳连接,利用牵引机开始对牵引绳收线,并使张力机同步工作,张力保持在8~15kN,速度控制在20m/min左右,其间注意使光缆与地面或其它障碍物保持一定距离,均匀受力、匀速前进;牵引机、张力机要有专人操作,中间各杆塔及重要跨越点派专人监护,以防光缆与地面摩擦或被其它障碍物钩挂。整盘光缆放完后,可先在张力机端侧杆塔先做好耐张,然后在下一个耐张塔上做耐张,并按设计调整好张力和弧垂,同时满足光缆净空高度的要求。全线耐张做好后,直线杆塔采用悬垂金具线夹固定,并在档距两端安装防震鞭,档距大于500m安装两个,档距小于500m安装一个;终端塔一般各留比耐张点到地面的距离多10~15m余缆,以备熔接时操作方便。单盘光缆最好一天放完,否则,应做耐张挂高光缆,两侧余缆派人看守过夜,防止人为危害。全段光缆施工完毕,应清理现场和各跨越点,仔细清点施工人数无误后,方可到供电部门办理各跨越线路恢复送电手续。在施工放线时,光缆不能打扣、扭曲或挤压,时刻注意不能小于其最小弯曲半径:动态时为光缆外径的20倍加5cm,静态时为光缆外径的10倍。临时定位杆和金具的应用决定于光缆预期负荷张力的大小。在调节光缆弧垂时,应安装临时向下吊索,以防止结构失衡,这时临时定位杆距杆塔距离应不小于2倍杆塔高度。安装光缆前,所有临时性的吊索都要拉紧。光缆熔接应在每盘缆放完后当天内完成,否则,应盘好余缆固定至耐张塔上。光缆接续前,应将光缆在施工中可能受损的头部剪去2~3m,熔接完毕后还需用OTDR精确测量接头损耗等参数,确保每个熔接点衰减小于0.05dB,然后做热缩管加强保护并按光纤色谱顺序做好熔接记录。光纤的盘纤、接头盒封装也是一项细心的工作,先固定好热缩管,再将两侧余纤按槽道盘好,加上海棉衬垫,用胶带轻轻粘紧,操作过程中应防止挤压和弯曲半径过小现象,以免带来附加损耗。密封接续盒时要仔细检查每一处缝隙,以防日后水气进入。然后将尾缆盘好与接续盒一并固定到铁塔构件上,一般放在铁塔第一个横担上,距离地面6m左右。光缆下塔段,每间距1.5m左右处用引下线夹固定,距地面4m段用合适钢管套住,以防人为破坏;光缆接线盒应安放在塔上或埋在地下。注意做好施工期间的施工记录,以备工程验收和维护时查阅。
ADSS光缆线路工程涉及机械、电气、气象条件等诸多方面,是一项复杂的系统工程,因此必须要有科学的设计理念、严谨的施工方案才能建成高质量的电力信息化通道。
参考文献:
[1]张燕 ADSS 光缆设计与施工[J] 通信工程 2009 07
[2]刘强ADSS 光缆设计施工之我见[J] 通信工程 2010 07