论文部分内容阅读
半监督降维(Semi-Supervised Dimensionality Reduction,SSDR)框架下,基于成对约束提出一种半监督降维算法SCSSDR。利用成对样本进行构图,在保持局部结构的同时顾及数据的全局结构。通过最优化目标函数,使得同类样本更加紧凑、异类样本更加离散。采用UCI数据集对算法进行定量分析,发现该方法优于PCA及传统流形学习算法,进一步的UCI数据集和高光谱数据集分类实验表明:该方法适合于进行分类目的特征提取。