Microbial community structure and functional metabolic diversity are associated with organic carbon

来源 :Journal of Integrative Agriculture | 被引量 : 0次 | 上传用户:qiaolei8214122
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Exploration of soil environmental characteristics governing soil microbial community structure and activity may improve our understanding of biogeochemical processes and soil quality. The impact of soil environmental characteristics especially organic carbon availability after 15-yr different organic and inorganic fertilizer inputs on soil bacterial community structure and functional metabolic diversity of soil microbial communities were evaluated in a 15-yr fertilizer experiment in Changping County, Beijing, China. The experiment was a wheat-maize rotation system which was established in 1991 including four different fertilizer treatments. These treatments included: a non-amended control(CK), a commonly used application rate of inorganic fertilizer treatment(NPK); a commonly used application rate of inorganic fertilizer with swine manure incorporated treatment(NPKM), and a commonly used application rate of inorganic fertilizer with maize straw incorporated treatment(NPKS). Denaturing gradient gel electrophoresis(DGGE) of the 16 S r RNA gene was used to determine the bacterial community structure and single carbon source utilization profiles were determined to characterize the microbial community functional metabolic diversity of different fertilizer treatments using Biolog Eco plates. The results indicated that long-term fertilized treatments significantly increased soil bacterial community structure compared to CK. The use of inorganic fertilizer with organic amendments incorporated for long term(NPKM, NPKS) significantly promoted soil bacterial structure than the application of inorganic fertilizer only(NPK), and NPKM treatment was the most important driver for increases in the soil microbial community richness(S) and structural diversity(H). Overall utilization of carbon sources by soil microbial communities(average well color development, AWCD) and microbial substrate utilization diversity and evenness indices(H’ and E) indicated that long-term inorganic fertilizer with organic amendments incorporated(NPKM, NPKS) could significantly stimulate soil microbial metabolic activity and functional diversity relative to CK, while no differences of them were found between NPKS and NPK treatments. Principal component analysis(PCA) based on carbon source utilization profiles also showed significant separation of soil microbial community under long-term fertilization regimes and NPKM treatment was significantly separated from the other three treatments primarily according to the higher microbial utilization of carbohydrates, carboxylic acids, polymers, phenolic compounds, and amino acid, while higher utilization of amines/amides differed soil microbial community in NPKS treatment from those in the other three treatments. Redundancy analysis(RDA) indicated that soil organic carbon(SOC) availability, especially soil microbial biomass carbon(Cmic) and Cmic/SOC ratio are the key factors of soil environmental characteristics contributing to the increase of both soil microbial community structure and functional metabolic diversity in the long-term fertilization trial. Our results showed that long-term inorganic fertilizer and swine manure application could significantly improve soil bacterial community structure and soil microbial metabolic activity through the increases in SOC availability, which could provide insights into the sustainable management of China’s soil resource. Exploration of soil environmental characteristics governing soil microbial community structure and activity may improve our understanding of biogeochemical processes and soil quality. The impact of soil environmental characteristics especially organic carbon availability after 15-yr different organic and inorganic fertilizer inputs on soil bacterial community structure and functional metabolic diversity of soil Microbial flora were evaluated in a 15-yr fertilizer experiment in Changping County, Beijing, China. The experiment was a wheat-maize rotation system which was established in 1991 including four different fertilizer treatments. These treatments included: a non- amended control (CK), a commonly used application rate of inorganic fertilizer treatment (NPK); a commonly used application rate of inorganic fertilizer with swine manure incorporated treatment (NPKM), and a commonly used application rate of inorganic fertilizer with maize straw incorporated treatment (NPKS). Denaturing gradient gel electrophoresis (DGGE) of the 16 s r RNA gene was used to determine the bacterial community structure and single carbon source utilization profiles were determined to characterize the microbial community functional metabolic diversity of different fertilizer treatments using Biolog Eco plates. The results indicated that The use of inorganic fertilizer with organic amendments incorporated for long term (NPKM, NPKS) significantly promoted soil bacterial structure than the application of inorganic fertilizers only (NPK), and NPKM treatment was the most important driver for increases in the soil microbial community richness (S) and structural diversity (H). Overall utilization of carbon sources by soil microbial communities (average well color development, AWCD) and microbial substrate utilization diversity and evenness indices H ’and E) indicates that long-term inorganic fertilizer with organic amendments incorporated (NPKM, NPKS) could significantly stimulate soil microbial metabolic activity and functional diversity relative to CK, while no differences of them were found between NPKS and NPK treatments. Principal component analysis (PCA) based on carbon source utilization profiles also showed significant separation of soil microbial community under long-term fertilization regimes and NPKM treatment was significantly separated from the other microbial flora, carboxylic acids, polymers, phenolic compounds, and amino acid, while higher utilization of amines / amides differed soil microbial community in NPKS treatment from those in the other three treatments. Redundancy analysis (RDA) indicated that soil organic carbon (SOC) availability, especially soil microbial biomass carbon (Cmic) and Cmic / SOC ratio are the key factors of soil environmental characteristics contributing to the increase of b oth soil microbial community structure and functional metabolic diversity in the long-term fertilization trial. Our results showed that long-term inorganic fertilizer and swine manure application could significantly improve soil bacterial community structure and soil microbial metabolic activity through the increases in SOC availability, which could provide insights into the sustainable management of China’s soil resource.
其他文献
该文从挂篮荷载计算、施工流程、支座及临时固结施工、挂篮安装及试验、合拢段施工、模板制作安装、钢筋安装、混凝土的浇筑及养生、测量监控等方面人手,介绍了S226海滨大桥
目的 探讨DNA甲基化转移酶3b(DNMT3b)对人肝癌细胞株SMMC-7721中DLC-1基因的表达及其启动子区甲基化状况的影响.方法 将SMMC-7721细胞株分为两组,试验组应用siRNA技术沉默DNM
期刊
@@
该文从挂篮荷载计算、施工流程、支座及临时固结施工、挂篮安装及试验、合拢段施工、模板制作安装、钢筋安装、混凝土的浇筑及养生、测量监控等方面人手,介绍了S226海滨大桥
目的 探究空中交通管制员(空管员)在脑力疲劳状态下风险决策的特征,为减少脑力疲劳状态下管制决策失误提供理论依据. 方法 采用自身前后对照设计.41名空管员间断完成6h空中交
该文从挂篮荷载计算、施工流程、支座及临时固结施工、挂篮安装及试验、合拢段施工、模板制作安装、钢筋安装、混凝土的浇筑及养生、测量监控等方面人手,介绍了S226海滨大桥
期刊
该文从挂篮荷载计算、施工流程、支座及临时固结施工、挂篮安装及试验、合拢段施工、模板制作安装、钢筋安装、混凝土的浇筑及养生、测量监控等方面人手,介绍了S226海滨大桥
目的探讨白细胞介素-18(interleukin-18,IL-18)在小鼠海水淹溺性急性肺损伤(seawater drowning induced acute lung injury, SW-ALI)炎症反应中的作用。方法24只C57雄性小鼠SW-ALI建模后,按数字表法随机分为4组,每组6只。在0、4、8、12 h各实验点收集每组的肺脏、血清、肺泡灌洗液,定量PCR检测IL-18和Toll样受体
期刊
@@