论文部分内容阅读
针对k-means算法不适合凹形样本空间的问题,提出了一种基于距离调节的聚类算法.算法中引入了一种调节最短路径距离作为算法的相似度函数,该函数可以使经过高密度数据区域的两点距离缩短,而经过低密度数据区域的两点距离加长,由此来缩小类间样本的相似度,同时加大类间的相似度,以及更好的聚类.实验结果证明,该算法对凹状的聚类样本空间具有很好的聚类效果.