论文部分内容阅读
针对基本蚁群算法存在收敛速度慢、易陷入局部最优解等问题,受监工机制的启发,提出了监工蚁群算法,以监工距离作为评价标准,自适应地选择优良的蚂蚁更新信息素,提高了每次迭代中解的质量,指导之后的蚂蚁进行更好的学习。该算法选用优化的全局更新策略,使得信息素在进化前期增加较多,在后期增加较少;同时,自适应地将信息素的值限定在一定范围内,防止某条路径被选择的概率过大或者过小。该算法还添加了发散和收敛机制,当算法陷入局部最优解时,增加探索的概率,有助于跳出局部最优解。仿真结果表明,监工蚁群算法具有较高的全局寻优能力,减