本振增强直视合成孔径激光成像雷达的二维成像实验

来源 :激光与光电子学进展 | 被引量 : 0次 | 上传用户:bobo1116
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本振增强直视合成孔径激光成像雷达(SAIL)发射两束同轴且偏振正交的光束,采用外差接收方式接收回波信号,在数据处理过程中对两束偏振正交回波光束携带的目标信号自差,以达到消除大气扰动、运动平台振动和雷达系统本身产生的相位扰动的目的。对该雷达系统的二维成像实验装置进行了描述,并给出了该雷达系统对二维目标成像的信号获取过程和数据处理过程。实验实现了3.6mm×3.6mm的分辨率,并对两个二维点阵目标进行成像,取得了良好的成像对比度,证明了该雷达对二维目标成像的可行性。
其他文献
Epsilon-near-zero and epsilon near-pole materials enable reflective systems supporting a class of symmetry-protected and accidental embedded eigenstates (EEs) characterized by a diverging phase resonance. Here we show that pairs of topologically protected
期刊
Soluble microneedles (MNs) have recently become an efficient and minimally invasive tool in transdermal drug delivery because of their excellent biocompatibility and rapid dissolution. However, direct monitoring of structural and functional changes of MNs
In a photonic crystal composed of anisotropic constituents we quantify the range of input angles and the degree of collimation of the beam inside the crystal. The optical properties of a photobleached 4-dimethylamino-N-methyl-4-stilbazolium-tosylate (DAST
Computational ghost imaging(CGI) has recently been intensively studied as an indirect imaging technique. However, the image quality of CGI cannot meet the requirements of practical applications. Here,
对短于360亳微米波长的光学薄膜的需求,在薄膜的设计和生产方面形成了困难,但是可以克服的问题。
期刊
澳大利亚新南威尔士大学物理组的一项发现已使制造第一台伽玛射线激光器(或称伽玛激光器-Graser)成为可能。伽玛激光的波长只有普通激光波长的百万分之一,它将在科学和工业上获得广泛的应用。发现者相信,伽玛激光器将使激光技术,特别是物质精细结构的分析方面发生革命性的变革。它将第一次使人们能够“看到”原子,并使原子物理学家和化学家能够研究原子和分子的三维图象。
期刊
在空间光通信系统中,激光在大气中传输时容易受湍流效应影响,且接收端往往使用模场半径极小的单模光纤进行空间光耦合,导致光纤耦合效率降低,影响通信系统性能。为了提高接收端光纤耦合效率,结合随机并行梯度下降(SPGD)算法和少模光纤耦合解复用系统对动态湍流所引起的波前相位畸变进行补偿校正,并实现了传输距离为5 km的空间光通信数值仿真。仿真结果表明:在不同的湍流强度和风速条件下,未经SPGD算法校正时,两模光纤的耦合效率比单模光纤提高了0.5 dB~1.5 dB,相对标准差降低了0.03~0.4;经过SPGD算
期刊
通过高温固相法合成Ca2GdZr2Al3O12…Mn 4 等一系列荧光粉,利用X射线粉末衍射仪(XRD)、荧光分光光度计和紫外可见分光光度计对其物相结构和发光性能进行表征。基质结构表明,[ZrO6]八面体中的Zr 4 可以被Mn 4 取代,XRD图谱和不同温度下合成的荧光粉
针对现有局部立体匹配算法在弱纹理区域匹配精度低的问题,提出一种基于改进代价计算和自适应引导滤波代价聚合的局部立体匹配算法。该算法首先将增强后的梯度信息与基于增强梯度的Census变换相结合,构建代价计算函数;然后对图像的每一个像素构建自适应形状十字交叉窗口,并基于自适应窗口进行引导滤波代价聚合;最后通过视差计算和多步视差精化得到最终的视差图。实验结果表明,改进后的算法在Middlebury测试平台