论文部分内容阅读
本文从理论上证明了具有线性输出单元的多层前馈网络能用作最优特征提取器。同时还证明了多层前馈网络分类器的输出函数是最小均方误差意义下对Bayes决策函数的逼近,对于具有线性输出单元的三层前馈网络,当隐层单元数足够多时,这种逼近能达到任意精度。在此基础上,我们提出了一个综合了特征提取网络和分类器网络的组合神经网络模型,其性能好于单个的三层前馈网络。