圆锥曲线中的定点问题是解析几何中的综合问题,更是热点内容,这类问题往往将直观想象、运算求解、逻辑推理等核心素养的考查融为一体,备受命题者的青睐.武汉市2020届高三三月调考解析几何试题便是其中一例,该题构思巧妙,一经出现便引发师生关注,从学生答题情况来看,结果很不乐观,笔者经历了此题的命制过程,觉得有必要和大家谈谈此题的解法和一些思考.
高考数学命题将“多考点想,少考点算”作为一条基本命题理念.基于此,衍生出了一系列优化运算的解题策略,比如,特殊化、数形结合、利用“二手”结论、匹配法、观察法、利用模型、构造函数等等.本文以2021年高考试题为例,介绍一些实现“多想少算”的解题策略,以期读者充分感受“多想少算”的命题理念和策略的魅力.
1 方法介绍rn正难则反,顾名思义就是在正面解决问题的时候,解题切入口不明确、不易想到,或解答中情况复杂困难,这时可以考虑问题的对立面.在数学上常\'见的正难则反中的“正”与“反”相关概念有:rn(1)从集合角度有:集合A与它的朴集CUA;rn(2)从命题角度有:命题p与(-)p;rn(3)从概率角度有:事件A与它的对立事件A;rn(4)从证明角度有:反证法等.
导数综合问题是高考的热点和难点,涉及知识面广、综合性强,对能力要求较高,能较好地考查学生的思维能力,一般作为高考的压轴题目出现.解答这类题目往往需要用构造函数的技巧和方法,本文总结出运用“构造法”解导数综合问题的常用构造策略,供参考.